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Cohomologial dimension of
Laumon 1-motives up to isogenies

par Nicola MAZZARI

Résumé. Nous prouvons que la dimension cohomologique de la
catégorie des 1-motifs de Laumon à isogénie près sur un corps
de caractéristique nulle est ≤ 1. En conséquence, cela implique le
même résultat pour la catégorie des structures de Hodge formelles
de niveau ≤ 1 (sur Q).

Abstract. We prove that the category of Laumon 1-motives up
to isogenies over a field of characteristic zero is of cohomological
dimension ≤ 1. As a consequence this implies the same result for
the category of formal Hodge structures of level ≤ 1 (over Q).

1. Introduction
In [6] P. Deligne defined a 1-motive over a field k as Gal(ksep|k)-equivar-

iant morphism [u : X → G(ksep)] where X is a free Gal(ksep|k)-module
and G is a semi-abelian algebraic group over k. They form a category that
we shall denote byM1,k orM1.

Deligne’s definition was motivated by Hodge theory. In fact the category
of 1-motives over the complex numbers is equivalent, via the so called Hodge
realization functor, to the category MHS1 of mixed Hodge structures of level
≤ 1. It is known the the category MHS1 is of cohomological dimension 1
(see [5]) and the same holds forM1,C.

F. Orgogozo proved more generally that for any field k, the category
M1,k ⊗Q is of cohomological dimension ≤ 1 (see [14, Prop. 3.2.4]).

Over a field of characteristic 0 it is possible to define the categoryMa
1,k

of Laumon 1-motives generalizing that of Deligne 1-motives (See [11]). In
[3] L. Barbieri-Viale generalized the Hodge realization functor to Laumon
1-motives. He defined the category FHS1 of formal Hodge structures of level
≤ 1 containing MHS1 and proved that FHS1 is equivalent to the category
of Laumon 1-motives over C (compatibly with the Hodge realization).

In this paper we prove that the category of Laumon 1-motives up to
isogenies is of cohomological dimension 1.
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2. Laumon 1-motives
Let k be a (fixed) field of characteristic zero. Let Schk be the category of

schemes over k and Affk be the full sub-category of affine schemes. Accord-
ing to [1, Exp. IV §6.3] the fppf topology on Schk is the one generated by:
the families of jointly surjective open immersions in Schk; the finite families
of jointly surjective, flat, of finite presentation and quasi-finite morphisms
in Affk.

Let Abk be the category of abelian sheaves on Affk w.r.t. the fppf topol-
ogy. We will consider both the category of commutative group schemes and
that of formal group schemes (over k) as full sub-categories of Abk. We
denote by k̄ the algebraic closure of k.

Definition. A Laumon 1-motive over k (or an effective free 1-motive over
k, cf. [2, 1.4.1]) is the data of

(1) a (commutative) formal group F over k, such that LieF is a finite
dimensional k-vector space and F (k̄) = lim[k′:k]<∞ F (k′) is a finitely
generated and torsion-free Gal(k̄/k)-module;

(2) a connected commutative algebraic group scheme G over k;
(3) a morphism u : F → G in the category Abk.

Note that we can consider a Laumon 1-motive (over k)M = [u : F → G]
as a complex of sheaves in Abk concentrated in degree 0, 1.

It is known that any formal k-group F splits canonically as product
F o×F ét where F o is the identity component of F and is a connected formal
k-group, and F ét = F /F o is étale. Moreover, F ét admits a maximal sub-
group scheme F tor , étale and finite, such that the quotient F ét/F tor = F fr
is constant of the type Zr over k̄. One says that F is torsion-free if F tor = 0.

By a theorem of Chevalley any connected algebraic group scheme G is
the extension of an abelian variety A by a linear k-group scheme L that is
product of its maximal sub-torus T with a vector k-group scheme V . See
[7] for more details on algebraic and formal groups.

Definition. A morphism of Laumon 1-motives is a commutative square in
the category Abk. We denote by Ma

1 = Ma
1,k the category of Laumon k-

1-motives, i.e. the full sub-category of Cb(Abk) whose objects are Laumon
1-motives. We denote by M1 the full sub-category of Ma

1 whose objects
are Deligne 1-motives (over k) [6, §10.1.2].

Proposition 2.1. The category Ma
1 of Laumon 1-motives (over k) is an

additive category with kernels and co-kernels. In particular let (f, g) be a
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morphism from M = [u : F → G] to M ′ = [u′ : F ′ → G′] (i.e. u′f = gu),
then

(2.1) Ker(f, g) = [u∗Ker(g)o → Ker(g)o]

and

(2.2) Coker(f, g) = [Coker(f)fr → Coker(g)]

Proof. See [11, Prop. 5.1.3]. �

Remark. The category of connected algebraic groups is fully embedded
in Ma

1 and it is not abelian. So the category of Laumon 1-motives is not
abelian too. In fact consider a surjective morphism of connected algebraic
groups g : G → G′. Then Ker(g) is not necessarily connected and the
canonical map (in the category of connected algebraic groups)

Coim(g) = G/Ker(g)o → Im(g) = G′

is not an isomorphism in general.

According to [14] we define the category Ma
1 ⊗ Q of Laumon 1-motives

up to isogenies: the objects are the same of Ma
1; the Hom groups are

HomMa
1
(M,M ′)⊗Z Q.

Remark. Note that a morphism (f, g) : M → M ′ is an isogeny (i.e. an
isomorphism inMa

1 ⊗Q ) if and only if f is injective with finite co-kernel
and g is surjective with finite kernel.

Proposition 2.2. The category of Laumon 1-motives up to isogenies is
abelian.

Proof. By constructionMa
1⊗Q is an additive category. Let (f, g) :M →M ′

be a morphism of Laumon 1-motives. We know that the group π0(Ker(g)) =
Ker(g)/Ker(g)o is a finite group scheme, hence there exists an integer n
such that the following diagram commutes in Abk

Ker(f)

n·u
��

0

&&MMMMMMMMMM

Ker(g)o // Ker(g) // π0(Ker(g))

Then n ·u factors through Ker(g)o and it is easy to check that Ker((f, g)) =
[(u∗Ker(g)o)→ Ker(g)o] is isogenous to [Ker(f)→ Ker(g)0].

It follows that Coim(f, g) is isogenous to [(F /Ker(f))fr → G/Ker(g)].
As G/Ker(g)o → G/Ker(g) is an isogeny we get that the canonical map
Coim(f, g)→ Im(f, g) is an isogeny too.

This is enough to prove that the categoryMa
1 ⊗Q is abelian. �
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Remark. One can also define the category tMa
1 of 1-motives with torsion

over k (See [2, Def. 1.4.4]). We note that using the same arguments as in
[4, C.7.3] it is easy to show that there is an equivalence of categories

Ma
1 ⊗Q ∼−→ tMa

1 ⊗Q .
2.1. Weights. A Deligne 1-motive is endowed with an increasing filtra-
tion (of sub-1-motives) called the weight filtration ([6, §10.1.4]) defined as
follows

Wi =WiM :=


[X → G] i ≥ 0
[0→ G] i = −1
[0→ T ] i = −2
[0→ 0] i ≤ −3

; grWi M =


[X → 0] i = 0
[0→ A] i = −1
[0→ T ] i = −2
[0→ 0] otherwise

.

According to [4, C.11.1] we extend the weight filtration to Laumon 1-
motives.
Definition. Let M = [u : F → G] be a Laumon 1-motive. The weight
filtration of M is

W−3 = 0 ⊂W−2 = [0→ L] ⊂W−1 = [0→ G] ⊂W0 =M .
Remark.

(1) The morphisms of Laumon 1-motives are compatible w.r.t. the
weight filtration. Also the weight filtration extends to a filtration
on the objects ofMa

1 ⊗Q.
(2) Let Modfk be the category of finite dimensional k-vector spaces.

The full sub-category ofMa
1 ⊗Q of Laumon 1-motives of weight 0

is equivalent to the category Modfk×RepQ(Gal(k̄/k)) via the functor
F 7→ (Lie(F ),F (k)⊗Q).

3. Cohomological dimension
3.1. Extensions. Let A be any abelian category (we don’t suppose it has
enough injective objects), then we can define its derived category D(A)
and the group of n-fold extension classes ExtnA(A,B) := HomD(A)(A,B[n]),
A,B ∈ A. As usual we identify this group with the group of classes of
Yoneda extensions, i.e. the set of exact sequences

0→ B → E1 → · · · → En → A→ 0
modulo congruences (See [10] or [9]).

We will use the two following well-known facts about extensions and
filtrations.

(1) Let W−2 ⊂ W−1 ⊂ W0 = W be a filtration of W ∈ A. We have the
following exact sequences
γ : 0→W−2 →W−1 →W0/W−2 →W0/W−1 → 0
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γ1 : 0→W−2 →W−1 →W−1/W−2 → 0
γ2 : 0→W−1/W−2 →W0/W−2 →W0/W−1 → 0

and γ = γ1 · γ2 ∈ Ext2
A(W0/W−1,W−2) by definition. This class is

trivial, i.e. γ = 0 in Ext2
A(W0/W−1,W−2). (See [14, Lemma 3.2.5],

or [9, p. 184])
(2) Assume that the objects of A are filtered (by a separated and ex-

haustive filtration W ) and that the morphisms in A are compatible
w.r.t. this filtration. If ExtnA(grWi A, grWj B) = 0 for any i, j, then
ExtnA(A,B) = 0. In fact assume for instance that B has a 3 steps
filtration 0 ⊂ W−2 ⊂ W−1 ⊂ W0 = B: then we have the canonical
exact sequences

0→W−1M
′ →M ′ → grW0 M ′ → 0

0→W−2M
′ →W−1M

′ → grW−1M
′ → 0

By applying Hom(A,−) we get two long exact sequences

· · ·Ext2(A,W−1B
′)→ Ext2(A,B)→ Ext2(M, grW0 B) · · ·

· · ·Ext2(A, grW−2B)→ Ext2(A,W−1B)→ Ext2(A, grW−1B) · · ·
from this follows that we can reduce to prove Ext2(A, grWi B) = 0.
This process can be easily adapted to the general case.

Now we can give a sketch of the proof of the main theorem: one first
checks that Ext1

Q(M,M ′) = 0 ifM,M ′ are pure of weights w,w′ and w ≤ w′
(a 1-motive is pure if it is isomorphic to one of its graded pieces w.r.t. the
weight filtration). By point (2) above this formally reduces the problem to
checking that if M,M ′,M ′′ are pure respectively of weights 0,−1,−2, then
the Yoneda product of two classes (γ1, γ2) ∈ Ext1

Q(M ′,M ′′)×Ext1
Q(M,M ′)

is 0. Of course we may assume γ1 and γ2 integral. Then the point is that
γ1 and γ2 glue into a 1-motive and we can conclude by (1) above.

3.2. Main result. From now on we call 1-motive a Laumon 1-motive
(over k) and ExtiQ(M,M ′) is the group of classes of i-fold extensions in
Ma

1 ⊗Q.

Theorem 3.1. The category Ma
1 ⊗ Q (and in particular FHS1 ⊗ Q) is of

cohomological dimension 1.

Proof. By the general facts on extensions (§3.1 (2)) we can restrict to con-
sider only pure motives M = grWw M and M ′ = grWw′M ′ of weight w and
w′, respectively.
(Equal weights) If w = w′ we can show that Ext1

Q(M,M ′) = 0. Let 0 →
M ′ → E → M → 0 be an exact sequence in Ma

1 ⊗ Q, then also E is
pure of weight w. We have to consider 3 cases: first note the category
Modfk ×RepQ(Gal(k̄/k)) is semi-simple by Maschke’s lemma [15, p. 47] and
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so the claim holds for the weight zero case by point (2) of the remark in
§2.1: also the category of abelian varieties up to isogenies (i.e. w = −1) is
semi-simple by [13, p. 173]; the third case (weight −2) can be reduced to
the first by Cartier duality (See [11, §5]) or proved explicitly.
(Different weights) Fix a 2-fold extension γ ∈ Ext2

Q(M,M ′) represented by

0→M ′ → E1 → E2 →M → 0
and let E = Ker(E2 → M). Then we can write γ = γ1 · γ2, where
γ2 ∈ Ext1

Q(M,E), γ1 ∈ Ext1
Q(E,M ′). Using the canonical exact sequence

induced by weights and the first part of the proof it is easy to reduce to
the case E = gr−1E, i.e. E is an abelian variety.

If w < w′ then γ1 is an extension of an abelian variety E by M ′ which is
a formal group or an abelian variety. Then γ1 = 0 (if M ′ is a formal group
we refer to [2, Lemma A.4.5]).

It remains to study what happens if w > w′. If w or w′ is equal to −1
there is nothing to prove because E is an abelian variety too. So the only
case left is when w = 0 and w′ = −2, i.e. M = F [1], M ′ = L[0]. We want
to reduce to the situation considered in § 3.1 (1). Thus we have to show
that there exists a 1-motive N such that γ1 ∈ Ext1

Q(E,L) is represented by
0 → W−2N → W−1N → gr−1N → 0; γ2 ∈ Ext1

Q(F [1], E) is represented
by 0→ gr−1N →W0N/W−2 → gr0N → 0.

We claim that γ1 and γ2 can be represented by extensions in the category
Laumon-1-motives. In fact let

γ1 : 0→ L f⊗n
−1
−→ G g⊗m

−1
−→ E → 0

be an extension in the category of 1-motives modulo isogenies: f, g are
morphism of algebraic groups, n,m ∈ Z. Then consider the push-forward by
n−1 and the pull-back by m−1, we get the following commutative diagram
with exact rows inMa,fr

1 ⊗Q

0 // L

n−1

��

f/n // G

id
��

g/m // E

id
��

// 0

0 // L
f // G

g/m // E // 0

0 // L

id

OO

f // G

id

OO

g // E

m−1

OO

// 0
The exactness of the last row is equivalent to the following: Ker f is finite;

let (Ker g)0 be the connected component of Ker g, then Imf → (Ker g)0 is
surjective with finite kernel K; g is surjective. So after replacing L, E with
isogenous groups we have an exact sequence inMa,fr

1

0→ L→ G→ E → 0
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Explicitly

0 // L

��

f // G

id
��

g // E

id
��

// 0

0 // L/Ker f

��

// G

��

g // E

��

// 0

0 // Imf/K // G
g // E // 0

0 // Imf/K

id

OO

// G

OO

// G/(Ker g)0

OO

// 0

With similar arguments we can prove that γ2 is represented by an ex-
tension in the categoryMa,fr

1

0→ E → N → F [1]→ 0

with N = [u : F → E].
To conclude we have to prove that there is lifting u′ : F → G. First

suppose F = F ét: consider the long exact sequence

HomAbk(F ,G)→ HomAbk(F , E) ∂→ Ext1
Abk(F ,L) .

We can consider a (Galois) extension k′/k of finite degree d trivializing F .
By [12, Theorem 3.9] we get the vanishing of Ext1

Abk′ (F k′ ,Lk′). Recall that
the multiplication by d on F can be written as the composition

F
can.→ Πk′/kF k′

tr→ F

where Πk′/k is Weil restriction functor and tr is the trace map. This im-
plies that Ext1

Abk(F ,L) is torsion, hence ∂u = 0 and the lift exists (up to
isogeny).

In case F = F o is a connected formal group we have a commutative
diagram in Abk

F

����
��

��
��

u

��

Ĝ

��@
@@

@@
@@

π̂ // Ê

��?
??

??
??

?

G
π // E

where ?̂ is the formal completion at the origin of ? = G, E. The formal
completion is an exact functor so π̂ is an epimorphism. The category of
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connected formal groups is equivalent to Modfk , thus we can choose a section
σ of π̂. Then we can easily construct a (non canonical) lifting of u. �
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