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EXTENSIONS OF FORMAL HODGE STRUCTURES

Nicola Mazzari
Department of Mathematics, Università degli Studi di Padova,
Padova, Italy

We define and study the properties of the category FHSn of formal Hodge structure
of level ≤n following the ideas of Barbieri-Viale who discussed the case of level ≤1.
As an application, we describe the generalized Albanese variety of Esnault, Srinivas,
and Viehweg via the group Ext1 in FHSn. This formula generalizes the classical one
to the case of proper but not necessarily smooth complex varieties.
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INTRODUCTION

The aim of this work is to develop the program proposed by Bloch, Barbieri-
Viale, and Srinivas [1, 2] of generalizing Deligne mixed Hodge structures providing a
new cohomology theory for complex algebraic varieties. In other words, to construct
and study cohomological invariants of (proper) algebraic schemes over � which are
finer than the associated mixed Hodge structures in the case of singular spaces. For
any natural number n > 0 (the level), we construct an abelian category, FHSn, and
a family of functors

Hn�k
� � �Sch/��� → FHSn 1 ≤ k ≤ n

such that:

1. The category MHSn of mixed Hodge structure of level ≤n is a full subcategory
of FHSn;

2. There is a forgetful functor f � FHSn → MHSn s.t. f�Hn�k
� �X�� = Hn�X�

(functorially in X) is the usual mixed Hodge structure on the Betti cohomology
of X, i.e., Hn�X� �= Hn�Xan���.

Roughly speaking, the sharp cohomology objects Hn�k
� �X� consist of the

singular cohomology groups Hn�Xan���, with their mixed Hodge structure, plus
some extra structure. We remark that Hn�k

� �X� is completely determined by the mixed
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EXTENSIONS OF FHS 1373

Hodge structure on Hn�X� when X is proper and smooth; the extra structure shows
up only when X is not proper or singular.

The motivating example is the following one. Let X be a proper
algebraic scheme over �. Denote Hi�X� �= Hi�Xan���, H

i�X�� �= Hi�X�⊗�, and let
Hi�j

dR�X� �= Hi�Xan��
<j� be the truncated analytic De Rham cohomology of X. Then

there is a commutative diagram

where the �-linear maps �j are surjective. This diagram is the formal Hodge
structure Hi�i

� �X� (or simply Hi
��X�).

Note that this definition is compatible with the theory of formal Hodge
structures of level ≤ 1 developed by Barbieri-Viale (See [2]). He defined H1

��X� as
the generalized Hodge realization of Pic0�X�, i.e., H1

��X� �= T∮ �Pic0�X��, which is
explicitly represented by the diagram

As an application of this theory, we can express the Albanese variety of
Esnault, Srinivas, and Viehweg [6] using ext-groups. Precisely, let X be a proper,
irreducible, algebraic scheme over �. Let d = dimX, and denote by H2d−1�d

� �X� the
formal Hodge structure represented by the following diagram:

Then there is an isomorphism of complex Lie groups

ESV�X�an � Ext1FHSd

(
��−d��H2d−1�d

� �X�
)
�

where ESV�X� is the generalized Albanese of [6]. Note that this formula generalizes
the classical one

Alb�X�an � Ext1MHS

(
��−d�� H2d−1�X�

)
�

which follows from the work of Carlson (see [4]).
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1374 MAZZARI

1. FORMAL HODGE STRUCTURES

We simply call a formal group a commutative group of the form H = Ho ×
Het, where Het is a finitely generated abelian group and Ho is a finite dimensional
�-vector space. We denote by FrmGrp the category with objects formal groups and
morphisms f = �f o� fet� � H → H ′, where fo � Ho → H ′o is �-linear and fet � Het →
H ′

et is �-linear.
We denote the category of mixed Hodge structures of level ≤ l (i.e., of type

��n�m� � 0 ≤ n�m ≤ l	) by MHSl = MHSl�0�, for l ≥ 0. Also, we define the category
MHSl�n� to be the full subcategory of MHS whose objects are Het ∈ MHS such that
Het⊗��−n� is in MHSl�0�.

Let Vec = Vec1 be the category of finite dimensional complex vector spaces
and n > 0 be an integer. We define the category Vecn, as follows. The objects are
diagrams of n− 1 composable arrows of Vec denoted by

V � Vn

vn−→ Vn−1

vn−1−→ Vn−2 → · · · → V1


Let V� V ′ ∈ Vecn, a morphism f � V → V ′ is a family fi � Vi → V ′
i of �-linear

maps such that

is commutative for all 1 ≤ i ≤ n.

Definition 1.1 (Level = 0). We define the category of formal Hodge structures of
level 0 (twisted by k), FHS0�k� as follows: the objects are formal groups H such
that Het is a pure Hodge structure of type �−k�−k�; morphism are maps of formal
groups.

Equivalently, FHS0�k� is the product category MHS0�k�× Vec.

Definition 1.2 (Level ≤ n). Fix n > 0 an integer. We define a formal Hodge
structure of level ≤n (or a n-formal Hodge structure) to be the data of:

(i) A formal group H (over �) carrying a mixed Hodge structure on the étale
component, �Het� F�W�, of level ≤ n. Hence, we get Fn+1H� = 0 and F 0H� =
H�, where H� �= Het⊗�.

(ii) A family of fin. gen. �-vector spaces Vi, for 1 ≤ i ≤ n.
(iii) A commutative diagram of abelian groups

such that �i, h
o are �-linear maps.
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EXTENSIONS OF FHS 1375

We denote this object by �H� V� or �H� V� h� ��. Note that V = �Vn → · · · →
V1	 can be viewed as an object of Vecn.

The map h = �het� h
o� � H → Vn is called augmentation of the given formal

Hodge structure. A morphism of n-formal Hodge structures is a pair �f� �� such that:
f � H → H ′ is a morphism of formal groups; f induces a morphism of mixed Hodge
structures fet; �i � Vi → V ′

i is a family of �-linear maps; � � V → V ′ is a morphism in
Vecn; and �f� �� are compatible with the above structure, i.e., such that the following
diagram commutes:

We denote this category by FHSn = FHSn�0�.

Remark 1.3. Note that the commutativity of the diagram (iii) of the above
definitions implies that the maps �i are surjective. In fact, after tensor by � we get
that the composition �n � h� is the canonical projection H� → H�/F

n: hence �n is
surjective. Similarly, we obtain the surjectivity of �i for all i.

Example 1.4 (Sharp Cohomology of a Curve). Let U = X \D be a complex
projective curve minus a finite number of points. Then we get the following
commutative diagram:

representing a formal Hodge structure of level ≤1.

Remark 1.5 (Twisted FHS). In a similar way, one can define the category
FHSn�k�, whose object are represented by diagrams

where Het is an object of MHSn�k�.
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1376 MAZZARI

Hence the Tate twist Het 
→ Het⊗��k� induces an equivalence of categories

FHSn�0� → FHSn�k� �H� V� 
→ �H�k�� V�k���

where H�k� = Het⊗��k�×Ho and V�k� is obtained by V shifting the degrees, i.e.,
V�k�i = Vi+k, for 1− k ≤ i ≤ n− k.

Example 1.6 (Level ≤ 1). According to the above definition a 1-formal Hodge
structure twisted by 1 is represented by a diagram

where is �Het� F�W� be a mixed Hodge structure of level ≤1 (twisted by ��1�), i.e.,
of type �−1� 0× �−1� 0 ⊂ �2 (recall that this implies F 1H� = 0 and F−1H� = H�).
If we further assume that Het carries a mixed Hodge structure such that grW−1Het is
polarized, we get the category studied in [2].

Proposition 1.7 (Properties of FHS).

(i) The category FHSn is an abelian category.
(ii) The forgetful functor �H� V� 
→ H (resp., �H� V� 
→ V ) is an exact functor with

values in the category of formal groups (resp., the category Vecn).
(iii) There exists a full and thick embedding MHSl�0� → FHSl�0� induced by

�Het� F�W� 
→ �Het� Vi = H�/F
i�.

(iv) There exists a full and thick embedding Vecl�0� → FHSl�0� induced by V 
→ �0� V�.

Proof. (i) It follows from the fact that we can compute kernels, co-kernels, and
direct sum component-wise.

(ii) It follows by (i).

(iii) Let �f� �� � �Het� H�/F� → �H ′
et� H

′
�/F� be a morphism in FHSn. Then by

definition, for any 1 ≤ i ≤ n, there is a commutative diagram

where f̄i�x + FiH�� = f�x�+ FiH ′
� is the map induce by f : it is well defined because

the morphisms of mixed Hodge structures are strictly compatible w.r.t. the Hodge
filtration. Hence � is completely determined by f .

(iv) It is a direct consequence of the definition of FHSn. �
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EXTENSIONS OF FHS 1377

Lemma 1.8. Fix n ∈ �. The following functor

MHS → Vec� �Het�W� F� 
→ H�/F
n

is an exact functor.

Proof. This follows from [5, §1.2.10]. �

1.1. Subcategories of FHSn

Let �H� V� be a formal Hodge structure of level ≤n. It can be visualized as a
diagram

where Vo
i �= Ker��i � Vi → H�/F

i�. We can consider the following n-formal Hodge
structures:

1. �H� V�et �= �Het� V/V
o�, called the étale part of �H� V�;

2. �H� V�× �= �H� V/V o�, where the augmentation H → H�/F
n = Vn/V

o
n is the

composite �n � h.
We say that �H� V� is étale (resp., connected) if �H� V� = �H� V�et (resp., �H� V�et = 0).
Also we say that �H� V� is special if ho � Ho → Vn factors through Vo

n . We will denote
by FHSn�et (resp., FHSo

n, FHSs
n) the full subcategory of FHSn whose objects are étale

(resp., connected, special). Note that by construction the category of étale formal
Hodge structure FHSn�et is equivalent to MHSn, by abuse of notation, we will identify
these two categories.

Proposition 1.9 (Canonical Decomposition).

(i) Let �H� V� ∈ FHSn (n > 0), then there are two canonical exact sequences

0 → �0� V o� → �H� V� → �H� V�× → 0� 0 → �H� V�et → �H� V�× → �Ho� 0� → 0


(ii) The augmentation ho � Ho → Vn factors trough Vo
n ⇐⇒ there is a canonical exact

sequence

0 → �H� V�o → �H� V� → �H� V�et → 0�

where �H� V�o �= �Ho� V o�.
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1378 MAZZARI

Proof. (i) Let �0� �� � �0� V o� → �H� V� be the canonical inclusion. By 1.7
Coker�0� �� can be calculated in the product category FrmGrp × Vecn, i.e.,
Coker�0� �� = Coker 0× Coker � = H × V/Vo and the augmentation H → H�/F

n is

the composition H
h→ Vn

�n→ H�/F
n.

For the second exact sequence, consider the natural projection po � H → Ho. It
induces a morphism �po� 0� � �H� V�× → �Ho� 0�. Using the same argument as above,
we get Ker�po� 0� = Kerpo ×Ker 0 = Het × V/V 0 as an object of FrmGrp × Vecn.
From this follows the second exact sequence.

(ii) By the definition of a morphism of formal Hodge structures (of level ≤n),
we get that the canonical map, in the category FrmGrp × Vecn, �p�� �� � H × V →
Het × V/Vo induces a morphism of formal Hodge structures ⇐⇒ the following
diagram commutes:

i.e., �nh�x� y� = y mod FnH� for all x ∈ Ho� y ∈ Het ⇐⇒ ho�x� = 0
 �

Remark 1.10. With the above notations, consider the map �po� 0� � H × V →
Ho × 0. Note that this is a morphism of formal Hodge structure ⇐⇒ V 0 = 0 ⇐⇒
�H� V� = �H� V�×.

Remark 1.11. For n = 0, we can also use the same definitions, but the situation is
much easier. In fact a formal structure of level 0 is just a formal group H ; hence,
there is a split exact sequence

0 → Ho → H → Het → 0

in FHS0�0�.

Corollary 1.12. Let �0�FHSn� be the Grothendieck group (see [10, Def. A.4])
associated to the abelian category FHSn. Then

�0�FHSn� = �0�Vec�×�0�Vecn�×�0�MHSn�

� ��f� g� ∈ ��t× ��u� v � degtf� degug� degvg ≤ n� g�u� v� = g�v� u�	


Proof. It follows easily by (i) of 1.9. �

By 1.7 there exists a canonical embedding MHSn ⊂ FHSn (resp., Vecn ⊂ FHSn).
It is easy to check that this embedding gives, in the usual way, a full embedding
when passing to the associated homotopy categories, i.e.,

K�MHSn� ⊂ K�FHSn�� resp. K�Vecn� ⊂ K�FHSn�
 (1)
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EXTENSIONS OF FHS 1379

With the following lemma, we can prove that we have an embedding when passing
to the associated derived categories.

Lemma 1.13. Let A′ ⊂ A be a full embedding of categories. Let S be a multiplicative
system in A and S′ be its restriction to A′. Assume that one of the following conditions:

(i) For any s � A′ → A (where A′ ∈ A′, A ∈ A, s ∈ S), there exists a morphism f � A →
B′ such that B′ ∈ A′ and f � s ∈ S;

(ii) The same as (i) with the arrow reversed.

Then the localization A′
S′ is a full subcategory of AS .

Proof. [7, 1.6.5]. �

Proposition 1.14. There is a full embedding of categories D�MHSn� ⊂ D�FHSn�
(resp., D�Vecn� ⊂ D�FHSn�).

Proof. We will prove only the case involving MHSn, the other one is similar.
First note that, similarly to (1), there is a full embedding K�FHSn�×� ⊂ K�FHSn�,
where FHSn�× is the full subcategory of FHSn with objects �H� V� such that �H� V� =
�H� V�× (see 1.9). Now using (i) of Lemma 1.13 and the first exact sequence of 1.9,
we get a full embedding D�FHSn�×� ⊂ D�FHSn�.

Then consider the canonical embedding MHSn ⊂ FHSn�×. Again we get a
full embedding of triangulated categories K�MHSn� ⊂ K�FHSn�×�. Now using (ii)
of Lemma 1.13 and the second exact sequence of 1.9, we get a full embedding
D�FHSn�×� ⊂ D�FHSn�. �

1.2. Adjunctions

Proposition 1.15. The following adjunction formulas hold:

(i) HomMHS�Het� H
′
et� � HomFHSn

��H� V�� �H ′
et� H

′
�/F�� for all �H� V� ∈ FHSs

n (i.e.,
special), H ′

et ∈ MHSn;
(ii) HomFHSn

��Ho� V�� �H ′� V ′�� � HomFHSn
��Ho� V�� ��H ′�o� �V ′�o�� for all �Ho� V� ∈

FHSo
n (i.e., connected), �H ′� V ′� ∈ FHSs

n.

Proof. The proof is straightforward. Explicitly:

(i) Let �H� V� ∈ FHSs
n, H ′

et ∈ MHSn. By definition a morphism �f� �� ∈
HomFHSn

��H� V�� �H ′
et� H

′
�/F�� is a morphism of formal groups f � H → H ′ such

that fet is a morphism of mixed Hodge structures, hence f = fet, and � � V →
H ′

�/F is subject to the condition f/F � � = �. Then the association �f� �� 
→ fet ∈
HomMHS�Het� H

′
et� is an isomorphism.

(ii) Let �Ho� V� ∈ FHSo
n, �H

′� V ′� ∈ FHSs
n.

A morphism �f� �� in HomFHSn
��Ho� V�� �H ′� V ′�� is of the form f = fo � Ho →

�H ′�o, � � V → V ′ must factor through �V ′�o because �′ � � = � � f/F = 0. �
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1.3. Different Levels

Any mixed Hodge structure of level ≤ n (say in MHSn�0�) can also be viewed
as an object of MHSm�0� for any m > n. This give a sequence of full embeddings

MHS0 ⊂ MHS1 ⊂ · · · ⊂ MHS


In this section, we want to investigate the analogous situation in the case of formal
Hodge structures.

Consider the two functors �� � � Vecn → Vecn+1 defined as follows:

��V� � ��V�n+1 = Vn

id→ ��V�n = Vn

vn→ · · · → V1�

��V� � ��V�n+1 = 0
0→ ��V�n = Vn

vn→ · · · → V1


Proposition 1.16. The functors �� � are full and faithful. Moreover, the essential
image of � (resp., �) is a thick subcategory.1

Proof. To check that �� � are embeddings, it is straightforward. We prove that the
essential image of � (resp., �) is closed under extensions only in case n = 2 just to
simplify the notations.

First consider an extension of �V by �V ′ in Vec3

Then it follows that V ′′
3 = 0.

Now consider an extension of �V by �V ′ in Vec3

Then v is an isomorphism (by the snake lemma). It follows that V ′′ is isomorphic, in
Vec3, to an object of �Vec2. To check that the essential image of � (resp., �) is closed
under kernels and cokernels is straightforward. �

1By thick we mean a subcategory closed under kernels, co-kernels, and extensions.
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EXTENSIONS OF FHS 1381

Remark 1.17. The category of complexes of objects of Vec concentrated in degrees
1� 
 
 
 � n is a full subcategory of Vecn. Moreover, the embedding induces an
equivalence of categories for n = 1 and 2, but for n > 2 the embedding is not
thick.

Example 1.18 (FHS1 ⊂ FHS2). The basic construction is the following one: Let
�H� V� be a 1-fhs; we can associate a 2-fhs �H ′� V ′� represented by a diagram of the
following type:

Take H ′
et �= Het, then H ′

�/F
2 = H�, H

′
�/F

1 = H�/F
1, and the augmentation h′

et is
the canonical inclusion; let V ′

1 �= V1, �
′
1 �= �1, and define V ′

2� �
′
2� v

′
2 via fiber product

Hence V ′
2 fits in the following exact sequences:

0 → F 1H� → V ′
2 → V1 → 0� 0 → V 0

1 → V ′
2 → H� → 0


Finally, we define �h′�o � �H ′�o → V ′
2 again via fiber product

Hence, we get the exact sequence

0 → F 1H� → �H ′�o → Ho → 0


By induction, it is easy to extend this construction. We have the following
result.

Proposition 1.19. Let n� k > 0. Then there exists a faithful functor

� = �k � FHSn → FHSn+k
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Moreover, � induces an equivalence between FHSn and the subcategory of FHSn+k whose
objects are �H� V� such that:

(a) Het is of level ≤ n. Hence Fn+1H� = 0 and F 0H� = H�;
(b) Vn+i = Vn+1 for 1 ≤ i ≤ k;
(c) There exists a commutative diagram with exact rows

where � is a �-linear map.

Morphisms are those in FHSn+k compatible w.r.t. the diagram in (c).

Proof. The construction of �k is a generalization of that in 1.18. We have �k = �1 �
�k−1; hence, it is enough to define �1, which is the same as in 1.18 up to a change of
subscripts: n = 1, n+ 1 = 2.

To prove the equivalence, we define a quasi-inverse: Let �H ′� V ′� ∈ FHSn+1 and
satisfying a� b� c, and � � FnH ′

� → �H ′�o as in the proposition.
Define �H� V� ∈ FHSn in the following way: H = H ′/��FnH ′

��; Vi = V ′
i for all

1≤ i≤ n; h � H ′/��FnH ′
��

h̄′−→ V ′
n+1

v′n+1−→ V ′
n = Vn, where h̄′ = �h′

et� �h
′�o modFn�. �

Proposition 1.20. Let n� k > 0 and denote by �kFHSn ⊂ FHSn+k the essential image
of FHSn (see the previous proposition). Then �kFHSn ⊂ FHSn+k is an abelian (not full)
subcategory closed under kernels, cokernels, and extensions.

Proof. Straightforward. �

Remark 1.21. Note that �kFHSn ⊂ FHSn+k it is not closed under subobjects.

Remark 1.22. Let FHSprp
n be the full subcategory of FHSn whose objects are formal

Hodge structures �H� V� with Ho = 0.2 Then �k induces a full and faithful functor

� = �k � FHSprp
n → FHSprp

n+k


Moreover, �kFHSprp
n ⊂ FHSprp

n+k is an abelian thick subcategory.

Example 1.23 (Special Structures). For special structures, it is natural to consider
the following construction, similar to �k (compare with 1.18). Let �H� V� be a formal
Hodge structures of level ≤1. Define ��H� V� = �H� V ′� to be the formal Hodge

2The superscript prp stands for “proper”. In fact, the sharp cohomology objects (3.1) of a
proper variety have this property.
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structure of level ≤2 represented by the following diagram

where V ′
2� v

′
2� �h

′�o are defined via fiber product as follows:

Note that the commutativity of the external square is equivalent to say that �H� V�
is special. Hence, this construction cannot be used for general formal Hodge
structures.

Proposition 1.24. Let n� k > 0 be integers. Then there exists a full and faithful
functor

� = �k � FHSs
n → FHSs

n+k


Moreover, the essential image of �k, �kFHSspc
n , is the full and thick abelian subcategory

of FHSspc
n+k with objects �H� V� such that:

(a) Het is of level ≤ n. Hence Fn+1H� = 0 and F 0H� = H�;
(b) Vn+i = Vn+1 for 1 ≤ i ≤ k;
(c) Vn+1 = H� ×H�/F

n Vn.

Proof. Note that �k = �1 � �k−1; hence, it is enough to construct �1. Let �H� V� be a
special formal Hodge structure of level ≤ n. Then �1�H� V� is defined as in 1.23 up
to change the subscripts n = 1, n+ 1 = 2.

To prove the equivalence, it is enough to construct a quasi-inverse of �1. Let
�H ′� V ′� be a special formal Hodge structure of level ≤ n satisfying the conditions
a� b� c of the proposition; then, define �H� V� ∈ FHSn as follows: H �= H ′; Vi �= V ′

i

for all 1 ≤ i ≤ n; h = v′n+1 � h′.
Thickness follows directly from the exactness of the functors

�H� V� 
→ Het� �H� V� 
→ Vo

�

Remark 1.25. The functors �k� �k agree on the full subcategory of FHSn formed by
�H� V� with Ho = 0.
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2. EXTENSIONS IN FHSn

2.1. Basic Facts

Example 2.1. We describe the ext-groups for Vec2. We have the following
isomorphism:

� � Ext1Vec2
�V� V ′�

∼→ HomVec�Ker v�Coker v′�


Explicitly, � associates to any extension class the Ker–Coker boundary map of the
snake lemma. To prove it is an isomorphism, we argue as follows. The abelian
category Vec2 is equivalent to the full subcategory C ′ of Cb�Vec� of complexes
concentrated in degree 0� 1. Hence, the group of classes of extensions is isomorphic.
Now let a � A0 → A1, b � B0 → B1 be two complexes of objects of Vec. Then we have

Ext1C′�A
•� B•� = Ext1Cb�Vec��A

•� B•� = HomDb�Vec��A
•� B•�1�

because C ′ is a thick subcategory of Cb�Vec�.
The category Vec is of cohomological dimension 0. Then a � A0 → A1 is

quasi-isomorphic to Ker a
0→ Coker a, and similarly for B•. It follows that

HomDb�Vec��A
•� B•�1� = HomDb�Vec��Ker a�0⊕ Coker a�−1�Ker b�1⊕ Coker b�0�

= HomVec�Ker a�Coker b�


As a corollary, we obtain that Ext1Vec2
�V�−� is a right exact functor, and this is a

sufficient condition for the vanishing of ExtiVec2
��−� for i ≤ 2 (i.e., Vec2 is a category

of cohomological dimension 1).

Example 2.2. The category Vec3 is of cohomological dimension 1. We argue as
in [9]. Let V be an object of Vec3. We define the following increasing filtration

W−2 = �0 → 0 → V1	� W−1 = �0 → V2 → V1	� W0 = V


Note that morphisms in Vec3 are compatible w.r.t. this filtration. To prove that
Ext2Vec3

�V� V ′� = 0, it is sufficient to show that Ext2Vec3
�grWi V� gr

W
j V

′� = 0 for i� j =
−2�−1� 0 (just use the short exact sequences induced by W , cf. [9, Proof of 2.5]). We
prove the case i = 0, j = −2, leaving to the reader the other cases (which are easier,
cf. [9, 2.2–2.4]).

Let � ∈ Ext2Vec3
�grW0 V� gr

W
−2V

′� = 0. We can represent � by an exact sequence in
Vec3 of the type

0 → grW−2V
′ → A → B → grW0 V → 0


Let C = Coker�grW−2V
′ → A� = Ker�B → grW0 V�. Then � = �1 · �2, where �1 ∈

Ext1Vec3
�C� grW−2V

′�, �2 ∈ Ext1Vec3
�grW0 V�C�. Arguing as in [9, 2.4], we can suppose that

C = grW−1C; hence,

�1 = �0 → grW−2V
′ → A → grW−1C → 0� �2 = �0 → grW−1C → B → grW0 V → 0
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It follows that A = �0 → C2

f1→ V ′
1	, B = �V3

f2→ C2 → 0	, for some f1� f2. Now

consider D = �V3

f2→ C2

f1→ V ′
1	 ∈ Vec3. Then it is easy to check that

�1 = �0 → W−2D → W−1D → grW−1D → 0�

�2 = �0 → gr−1D → W0D/W−2D → grW0 D → 0


By [9, Lemma 2.1], � = 0.

Proposition 2.3. Let Het be a mixed Hodge structure of level ≤n. We consider it as
an étale formal Hodge structure. Let �H ′� V ′� be be a formal Hodge structure of level
≤ n (for n > 0). Then:

(i) There is a canonical isomorphism of abelian groups

Ext1MHS�Het� H
′
et� � Ext1FHSn

�Het� �H
′� V ′/V ′o��


(ii) For any i ≥ 2, there is a canonical isomorphism

ExtiFHSn
�Het� �H

′� V ′/V ′o�� � ExtiFHSn
�Het� �H

′o� 0��


Proof. This follows easily by the computation of the long exact sequence obtained
applying HomFHSn

�H��−� to the short exact sequence

0 → �H ′� V ′�et → �H ′� V ′�× → �H ′o� 0� → 0

�

Proposition 2.4. The forgetful functor �H� V� 
→ Het induces a surjective morphism
of abelian groups

� � Ext1FHSn
��H� V�� �H ′� V ′�� → Ext1MHS�Het� H

′
et�

for any �H� V�� �H ′� V ′� with Het� H
′
et free.

Proof. Recall the extension formula for mixed Hodge structures is (see [10, I §3.5])

Ext1MHS�Het� H
′
et� �

W0�om�Het� H
′
et��

F 0 ∩W0��om�Het� H
′
et���+W0�om�Het� H

′
et��


 (2)

More precisely, we get that any extension class can be represented by H̃et = �H ′
et ⊕

Het�W� F��, where the weight filtration is the direct sum WiH
′
et ⊕WiHet and Fi

� �=
FiH ′

et + ��F iHet�⊕ FiHet, for some � ∈ W0�om�Het� H
′
et��. It follows that H̃�/F

i
� =

H ′
�/F

i ⊕H�/F
i. Then we can consider the formal Hodge structure of level ≤

n �H̃� Ṽ � defined as follows: H̃et = �H ′
et ⊕Het�W� F�� as above; H̃o �= �H ′�o ⊕Ho;

Ṽi �= V ′
i ⊕ Vi, ṽi �= �v′i� vi�; and h̃ = �h′� h�. Then it is easy to check that �H̃� Ṽ � ∈

Ext1FHSn
��H ′� V ′�� �H� V�� and ��H̃� Ṽ � = �H ′

et ⊕Het�W� F��. �
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Example 2.5 (Infinitesimal Deformation). Let f � X̂ → Spec���/��2� a smooth
and projective morphism. Write X/� for the smooth and projective variety
corresponding to the special fiber, i.e., the fiber product

Then (see [1, 2.4]) for any i� n there is a commutative diagram with exact rows

Hence there is an extension of formal Hodge structures of level ≤ n

0 → �0� V� → �Hn�X��Hn�∗
dR�X̂�� → Hn�X� → 0

with Vi = Hn−i+1�Xan��
i−1� and vi = 0.

Remark 2.6. It is well known that the groups Exti�A� B� vanish in category
of mixed Hodge structures for any i > 1. It is natural to ask if the groups
ExtiFHSn

��H� V�� �H ′� V ′�� vanish for i > n (up to torsion). In particular, Bloch and
Srinivas raised a similar question for special formal Hodge structures (cf. [1]).

The author answered positively this question for n = 1 in [9].

2.2. Formal Carlson Theory

Proposition 2.7. Let A�B torsion-free mixed Hodge structures. Suppose B pure of
weight 2p and A of weights ≤ 2p− 1. There is a commutative diagram of complex Lie
group

where �̄ is an isomorphism; i∗ is the surjection induced by the inclusion i � B
p�p
� → B.

Proof. This follows easily from the explicit formula (2). The construction of �� �̄ is
given in the following remark. Then choosing a basis of Bp�p

� , it is easy to check that
�̄ is an isomorphism. �
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Remark 2.8.

(i) Let �b1� 
 
 
 � bn	 a �-basis of B
p�p
� . Then Hom��B

p�p
� � Jp�A�� � ⊕n

i=1 J
p�A�,

which is a complex Lie group.
(ii) Explicitly, � can be constructed as follows. Let x ∈ Ext1MHS�B�A� represented by

the extension

0 → A → H → B → 0


Then, apply HomMHS���−p��−� to the above exact sequence, and consider the
boundary of the associated long exact sequence

· · · → HomMHS���−p�� B�
�x−→ Ext1MHS���−p�� A� → · · · 


Note that �x does not depend on the choice of the representative of x;
HomMHS���−p�� B� = B

p�p
� ; Jp�A� = Ext1MHS���−p�� A�.

Hence we can define ��x� �= �x ∈ Hom��B
p�p
� � Jp�A��.

(iii) If the complex Lie group Jp�A� is algebraic, then Hom��B
p�p
� � Jp�A�� can be

identified with set of one motives of the type

u � B
p�p
� → Jp�A�


Definition 2.9 (Formal-p-Jacobian). Let �H� V� be a formal Hodge structure of
level ≤n. Assume Het is a torsion free mixed Hodge structure. For 1 ≤ p ≤ n, the
pth formal Jacobian of �H� V� is defined as

J
p
� �H� V� �= Vp/Het�

where Het acts on Vp via the augmentation h. By construction, there is an extension
of abelian groups

0 → V 0
p → J

p
� �H� V� → Jp�H� V� → 0�

where we define Jp�H� V� �= Jp�Het� = H�/�F
p +Het�.

Note that Jp
� �H� V� is a complex Lie group if the weights of Het are ≤2p− 1.

Proposition 2.10. There is an extension of abelian groups

0 → Vo
p → Ext1FHSp

���−p�� �H� V�� → Ext1MHS���−p��Het� → 0�

for any �H� V� formal Hodge structure of level ≤ p+ 1. In particular, if Het has weights
≤2p− 1, there is an extension

0 → Vo
p → Ext1FHSp

���−p�� �H� V�� → Jp�Het� → 0
 (3)

Proof. By 2.4, there is a surjective map

� � Ext1FHSp
���−p�� �H� V�� → Ext1MHS���−p��Het�
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Recall that ��−p� is a mixed Hodge structure and here is considered as a formal
Hodge structure of level ≤ p represented by the following diagram:

It follows directly from the definition of a morphism of formal Hodge structures
that an element of Ker � is a formal Hodge structure of the form �H × ��−p��H/F�
represented by

where the augmentation h′
et�x� z� = het�x�+ ��z� for some � � � → Vo

p . The map �
does not depend on the representative of the class of the extension because Vp and
��−p� are fixed. �

Example 2.11. By the previous proposition for p = 1, we get

0 → Vo
1 → Ext1FHS1

���−1�� �H� V�� → Ext1MHS���−1��Het� → 0


3. SHARP COHOMOLOGY

Definition 3.1. Let X be a proper scheme over �, n > 0, and 1 ≤ k ≤ n. We define
the sharp cohomology object Hn�k

� �X� to be the n-formal Hodge structure represented
by the diagram

where

Vn�k
i �X� �=

{
Hn�i

dR�X� if 1 ≤ i ≤ k

Hn�X��/F
i ×Hn�X��/F

k Hn�k
dR�X� if k < i ≤ n


In the case n = k, we will simply write Hn
� �X� = Hn�n

� �X�. This object is
represented explicitly by
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Example 3.2. Let X be a proper scheme of dimension d (over �). Then H2d−1�X�

is a mixed Hodge structure satisfying Fd+1 = 0, and the sharp cohomology object
H2d−1�d

� �X� is represented by

and

Fd+1H2d−1�X�� ⊂ V 2d−1�k
n �X� = V 2d−1�k

n−1 �X� = · · · = V 2d−1�k
k+1 �X�


Hence, according to Proposition 1.19, H2d−1�d
� �X� can be viewed as a formal Hodge

structure of level ≤ d.

Proposition 3.3. For any n and 1 ≤ p ≤ n, the association X 
→ Hn�p
� �X� induces

a contravariant functor from the category of proper complex algebraic schemes to the
category FHSn.

Proof. It is enough to prove the claim for p = n. We know that Hn�X� �=
Hn�Xan��� along with its mixed Hodge structures is functorial in X, so for
any f � X → Y we have Hn�f� � Hn�Y� → Hn�X�. Also by the theory of Kähler
differentials, there exist a map of complexes of sheaves over X, �• � f ∗�•

Y → �•
X ,

inducing

� � Hn�X� f ∗�<r
Y � −→ Hn�X��<r

X �


Moreover, there exists � � Hn�Y��<r
Y � → Hn�X� f ∗�<r

Y �. For it is sufficient to
construct a map �′ � Hn�Y��<r

Y � → Hn�X� f−1�<r
Y �. So let I• (resp., J •) an injective

resolution3 of �<r
Y (resp., f−1�<r

Y ). Using that f−1 preserves quasi-isomorphisms, we
have the commutative diagram

where the existence of � follows from the fact that J • is injective. So we have defined
a map �r � H

n�Y��<r� → Hn�X��<r�.

3By injective resolution of a complex of sheaves A• we mean a quasi isomorphism A• → I•,
where I• is a complex of injective objects.
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Now choosing I•r � J
•
r for any r, it is easy to see that the maps �r fit in the

commutative diagram

Now it is straightforward to check that Hn�n
� �g � f� = Hn�n

� �f� �Hn�n
� �g�, for any f �

X → Y , g � Y → Z. �

Example 3.4 (No Künneth). Let X� Y be complete, connected, and complex
varieties. Then by Künneth formula it follows that

H1��X × Y�an� ?� = H1�Xan� ?�⊕H1�Yan� ?� ? = ��

so that H1
��X × Y� = H1

��X�⊕H1
��Y�. But as soon as we move in degree 2, there is

no hope for a good formula. With the same notation, we get

H2��X × Y��� = H2�X�� ⊕H1�X��⊗H1�Y�� ⊕H2�Y���

which is the usual decomposition of singular cohomology. Let p � X × Y → X, q �
X × Y → Y the two projections; note that

�X×Y → �1
X×Y = �<2

(
p∗��X → �1

X�⊗q∗��Y → �1
Y �
)
�

hence, there is a canonical map

H2�X × Y� p∗��<2
X �⊗q∗��<2

Y �� = ⊕2
i=0H

2−i�2
dR �X�⊗Hi�2

dR�Y� → H2�2
dR�X × Y��

which is not necessarily an isomorphism. From this it follows that we cannot have
a Künneth formula for H2�2

� �X × Y�.

3.1. The Generalized Albanese of Esnault–Srinivas–Viehweg

Let X be a proper and irreducible algebraic scheme of dimension d over
�. Then there exists an algebraic group, say ESV�X�, such that ESV�X�an =
H2d−1�X��<d�/H2d−1�Xan��� and it fits in the commutative diagram with exact rows

where � is induced by de canonical map of complexes of analytic sheaves � → �<d.
(See [6, Theorem 1, Lemma 3.1].)
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Recall that the formal Hodge structure (of level ≤2d − 1) H2d−1�d
� �X� can be

viewed as a fhs of level ≤d (see 3.2) represented by the following diagram:

Proposition 3.5. There is an isomorphism of complex connected Lie groups (not only
of abelian groups!)

ESV�X�an � Ext1FHSd
���−d��H2d−1�d

� �X���

where ��−d� is the Tate structure of type �d� d� viewed as an étale formal Hodge
structure.

Proof. Step 1. By [2], there is a canonical isomorphism of Lie groups

ESVan�X� � Ext1t�a
1
��� → 0� �0 → ESV�X�� � Ext1FHS1�1�

���0�� T∮ �ESV�X���
(recall that in [2] FHS1�1� is simply denoted by FHS1;

t˘a1 is the category of
generalized 1-motives with torsion), where T∮ �ESV�X�� is the formal Hodge
structure represented by

Step 2. Up to a twist by −d, we can view T∮ �ESV�X�� as an object of FHSd,
say �Het� V� with Het = H2d−1�X�, Vd = H2d−1�d

dR �X�, Vi = 0 for 1 ≤ i < d. It is easy to
check that Ext1FHS1�1�

���0�� T∮ �ESV�X��� = Ext1FHSd
���−d�� �Het� V��. Then applying

Ext1FHSd
���−d��−� to the canonical inclusion �Het� V� ⊂ H2d−1�d

� �X�, we get a natural
map

Ext1FHS1�1�
���0�� T∮ �ESV�X��� → Ext1FHSd

���−d��H2d−1�d
� �X���

which is an isomorphism by (3). �

3.2. The Generalized Albanese of Faltings and Wüstholz

Let U be a smooth algebraic scheme over �. Then it is possible to construct
a smooth compactification, i.e., ∃ j � U → X open embedding with X proper and
smooth. Moreover, we can suppose that the complement Y �= X \ U is a normal
crossing divisor.4

4It is possible to replace � with a field k of characteristic zero. In that case, we must assume
that there exists a k rational point in order to have FW�Z� defined over k.
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Remark 3.6. There is a commutative diagram (see [8, §3])

Hence, by the snake lemma, Ker b � Coker a. We identify these two �-vector
spaces, and we denote both by K.

For any Z ⊂ K subvector space, we define the �-linear map �Z � H1�X���∗ →
Z∗ as the dual of the canonical inclusion Z ⊂ H1�X���.

Defintion 3.7 (The Generalized Albanese of Serre). We know that

H1�U��1� = THodge��Div0Y �X� → Pic0�X��

and that the generalized Albanese of Serre is the Cartier dual of the above 1-motive,
i.e.,

�0 → Ser�U� = �Div0Y �X� → Pic0�X�∨


Note that by construction Ser�U� is a semi-abelian group scheme corresponding
to the mixed Hodge structure H1�U��1�∨ �= �omMHS�H

1�U��1�, ��1��.
The universal vector extension of Ser�U� is

0 → �Pic0�X� → Ser�U�� → Ser�U� → 0

this follows by the construction of Ser�U� as the Cartier dual of �Div0Y �X� →
Pic0�X� and [3] Lemma 2.2.4.

Recall that Lie�Pic0�X�� = H1�X���, then �Pic0�X���� = H1�X���∗.

Defintion 3.8 (The Gen. Albanese of Faltings and Wüstholz). We define an
algebraic group FW�Z� (depending on U and the choice of the vector space Z) to
be the vector extension of Ser�U� by Z∗ defined by

�Z ∈ Hom��H
1�X���∗� Z∗� � Hom���Pic0�X�� Z

∗� � Ext1�Ser�U�� Z∗��

i.e., FW�Z� is the push-forward

Proposition 3.9. With the above notation consider the formal Hodge structure
�Het� V� ∈ FHS1 represented by
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(This diagram is the dual of the left square in Remark 3.6). Recall that K = Ker a. Then

FW�K�an � Ext1FHS1
���−1�� �Het� V��


Proof. It is a direct consequence of 2.10. �
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