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Abstract The aim of this paper is to show that rigid syntomic cohomology – defined by Besser – is

representable by a rational ring spectrum in the motivic homotopical sense. In fact, extending previous
constructions, we exhibit a simple representability criterion and we apply it to several cohomologies

in order to get our central result. This theorem gives new results for rigid syntomic cohomology such

as h-descent and the compatibility of cycle classes with Gysin morphisms. Along the way, we prove
that motivic ring spectra induce a complete Bloch–Ogus cohomological formalism and even more.

Finally, following a general motivic homotopical philosophy, we exhibit a natural notion of rigid syntomic

coefficients.
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Introduction

In the 1980s, Beilinson stated his conjectures relating the special values of L-functions

and the regulator map of a variety X defined over a number field [3, 4]. The

regulator considered by Beilinson is a map from the K -theory of X with target the

Deligne–Beilinson cohomology1 with real coefficients

reg : K2i−n(X)(i)⊗Q→ Hn
DB(X,R(i)).

One can define Hn
DB(X, A(i)) for any subring A ⊂ R. For A = Z, Beilinson proved that

Hn
DB(X,Z(i)) is the absolute Hodge cohomology theory: i.e., it computes the group of

homomorphisms in the derived category of mixed Hodge structures

Hn
DB(X,Z(i)) = HomDb(M H S)(Z, R0Hdg(X)(i)[n]),

where R0Hdg(X) is the mixed Hodge complex associated to X whose cohomology is the

Betti cohomology of X endowed with its mixed Hodge structure [5]. Further, Beilinson

conjectured that the higher K -theory groups form an absolute cohomology theory, in fact

the universal one, called motivic cohomology. This vision is now partly accomplished. We

1Here, we assume that the weight filtration is part of the definition. This is not the case in the original
definition by Deligne, where only the Hodge filtration was considered. See [5] for a complete discussion.
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2 F. Déglise and N. Mazzari

do not have the category of mixed motives, but we can construct a triangulated category

playing the role of its derived category. More precisely, Cisinski and Déglise proved that

for any finite-dimensional noetherian scheme X there exists a monoidal triangulated

category DMB(X) = DMB(X,Q) (along with the six operations) such that

Hn,i
B (X) := HomDMB(S)(1S, π∗1X (i)[n]) ' K2i−n(X)(i)⊗Q

when π : X → S is a smooth morphism and S is regular [12].

Now let K be a p-adic field (i.e., a finite extension of Qp) with ring of integers R. Given

X a smooth and algebraic R-scheme, Besser defined the analogue of the Deligne–Beilinson

cohomology in order to study the Beilinson conjectures for p-adic L-functions [6]. The

work of Besser extends a construction initiated by Gros [22]. The cohomology defined

by Besser is called the rigid syntomic2 cohomology, denoted by Hn
syn(X, i). Roughly, it

is defined as follows. Let R0rig(Xs) (respectively, R0dR(Xη)) be a complex of Qp-vector

spaces whose cohomology is the rigid (respectively, de Rham) cohomology of the special

fiber Xs (respectively, generic fiber Xη) of X . Then

Hn
syn(X, i) = Hn−1(Cone( f : R0rig(Xs)⊕ F i R0dR(Xη)→ R0rig(Xs)⊕ R0rig(Xs)),

where f (x, y) = (x −φ(x)/pi , sp(y)− x), φ is the Frobenius map, and sp is the Berthelot

specialization map.

There is a regulator map for this theory, and one can also interpret rigid syntomic

cohomology as an absolute cohomology [2, 13].

The aim of the present paper is to represent rigid syntomic cohomology in the

triangulated category of motives by a ring object Esyn. This allows one to prove that rigid

syntomic cohomology is a Bloch–Ogus theory and satisfies h-descent (i.e., proper and fppf

descent). In particular, we obtain that the Gysin map is compatible with the direct image

of cycles as conjectured by Besser [7, Conjecture 4.2]. We can say that this paper is the

natural extension of the work of the first author in collaboration with Cisinski [11] and

that of the second author in collaboration with Chiarellotto and Ciccioni [13].

Let us review in more detail the content of this work.

First, we recall some results of the motivic homotopy theory. Let S be a base scheme

(noetherian and finite dimensional). To any object E in DMB(S) we can associate a

bi-graded cohomology theory

En,i (X) := HomDMB(S)(M(X),E(i)[n]),

where M(X) := π!π !1S is the (covariant) motive of π : X → S. The cohomology defined

by the unit object 1S of the monoidal category DMB(S) represents rational motivic

cohomology denoted by HB. When X is regular, Hn,i
B (X) coincides with the original

definition of Beilinson using Adams operations on rational Quillen K -theory.

The category of Beilinson motives DMB(S) can be constructed using some homotopical

machinery starting with the category C(S,Q) of complexes of Q-linear pre-sheaves on

2The word rigid is due to the fact that the rigid cohomology of Berthelot plays a role in the definition.
The word syntomic comes from the work of Fontaine and Messing [18], where the syntomic site was used
to define a cohomology theory strictly related to the one of Besser in the smooth and projective case.
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the category of affine and smooth S-schemes (see § 1). An object of DMB(S) should be

thought of as a cohomology theory on the category of S-schemes which is A1-homotopy

invariant, satisfies the Nisnevich excision, and is oriented (in the sense of remark 1.4.11

point (1)).

The category of Beilinson motives is monoidal. Monoids with respect to this tensor

structure correspond to cohomology theory equipped with a ring structure. Following the

general terminology of motivic homotopy theory, we call such a monoid a motivic ring

spectrum (Definition 2.1.1). Given such an object E, the associated cohomology theory

En,i (X) is naturally a bi-graded Q-linear algebra satisfying the following properties.

(1) Higher cycle class/regulator. The unit section of the ring spectrum E induces a

canonical morphism, called the regulator:

σ : Hn,i
B (X)→ En,i (X),

which is functorial in X and compatible with products.

(2) Gysin. For any projective morphism f : Y → X between smooth S-schemes there

is a (functorial) morphism

f∗ : En,i (Y )→ En−2d,i−d(X),

where d is the dimension of f .

(3) Projection formula. For f as above and any pair (x, y) ∈ E∗,∗(X)×E∗,∗(Y ), one has

f∗( f ∗(x).y) = x . f∗(y).

(3’) Degree formula. For any finite morphism f : Y → X between smooth connected

S-schemes, and any x ∈ En,i (X),

f∗ f ∗(x) = d.x,

where d is the degree of the function fields extension associated with f .

(4) Excess intersection formula. Consider a cartesian square of smooth S-schemes:

Y ′
q //

g
��

X ′

f��
Y

p // X

such that p is projective. Let ξ be the excess intersection bundle associated with

that square, and let e be its rank. Then, for any y ∈ E∗,∗(Y ), one gets

f ∗ p∗(y) = q∗(ce(ξ).g∗(y)).

(5) The regulator map σ is natural with respect to the Gysin functoriality.

(5’) The regulator map σ induces a Chern character

chn : Kn(X)Q→
⊕
i∈Z

E2i−n,i (X)

which satisfies the (higher) Riemann–Roch formula of Gillet (see [20]).
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(6) Descent. The cohomology En,i admits a functorial extension to diagrams of

S-schemes and satisfies cohomological descent for the h-topology3: given any

hypercover p : X → X for the h-topology, the induced morphism

p∗ : En,i (X)→ En,i (X )

is an isomorphism.4

(7) Bloch–Ogus theory. One can associate with E a canonical homology theory, the

Borel–Moore E-homology. For any separated S-scheme X with structural morphism

f , and any pair of integers (n, i), put

EBM
n,i (X) = Hom(1S, f∗ f !E(−i)[−n]).

Then, the pair (E,EBM) is a twisted Poincaré duality theory with support in

the sense of Bloch and Ogus (see [8]). Moreover Borel–Moore E-homology is

contravariantly functorial with respect to smooth morphisms.

These properties follow easily from the results proved in [12] and [14]. We collect them

in § 2.

Since our aim is to prove that rigid syntomic cohomology satisfies the Bloch–Ogus

formalism, we just need to represent it as a motivic ring spectrum. Thus we prove the

following criterion, which is the main result of the first section. Before stating it, we

introduce the following notation: for any complex E ∈ C(S,Q) and X/S smooth and

affine let

Hn(X, E) := Hn(E(X)).

Theorem (see Proposition 1.4.10). Let (Ei )i∈N be a family of complexes in C(S,Q)
forming an N-graded commutative monoid together with a section c : Q[0] → E1(Gm)[1]
satisfying the following properties.

(1) Excision. Let E Nis
i be the associated Nisnevich sheaves. For any integer i and any

X/S affine and smooth, Hn(X, Ei ) ' Hn
Nis(X, E Nis

i ).

(2) Homotopy. For any integer i and any X/S affine and smooth, Hn(X, Ei ) '

Hn(A1
X , Ei ).

(3) Stability. Let c̄ be the image of c in H1(Gm, E1). For any smooth S-scheme X and

any pair of integers (n, i), the following map5

Hn(X, Ei )→
Hn+1(X ×Gm, Ei+1)

Hn+1(X, Ei+1)
, x 7→ πX

(
x × c̄

)
is an isomorphism.

3The h-topology was introduced by Voevodsky. Recall that covers for this topology are given by
morphisms of schemes which are universal topological epimorphisms.
4One deduces easily from this isomorphism the usual descent spectral sequence.
5We let p : X ×Gm → X be the canonical projection and πX the following quotient map:

0→ Hn(X, Ei )
p∗
−−→ Hn(X ×Gm , Ei )

πX
−−→

Hn+1(X ×Gm , Ei+1)

Hn+1(X, Ei+1)
→ 0.
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(4) Orientation. Let u : Gm → Gm be the inverse map of the group scheme Gm , and

denote by c̄′ the image of c in the group H1(Gm, E1)/H1(S, E1). The following

equality holds: u∗(c̄′) = −c̄′.

Then there exists a motivic ring spectrum E together with canonical isomorphisms

HomDMB(S)(M(X),E(i)[n]) ' Hn(X, Ei )

for integers (n, i) ∈ Z×N, functorial in the smooth S-scheme X and compatible with

products. Moreover, E depends functorially on (Ei )i∈N and c.

The main difficulty of the above result is that the monoid structure on Ei is defined at

the level of complexes of pre-sheaves and not just in the homotopy category. Using this

result, we can prove (in § 2) the existence of motivic ring spectra representing several

cohomology theories. First, we prove that, for any algebraic scheme X , defined over a

field of characteristic zero, there is a motivic ring EFdR such that En,i
FdR(X) ' F i Hn

dR(X)
is the ith step of the Hodge filtration of the de Rham cohomology of X as defined by

Deligne [16]. Then we prove that the rigid cohomology of Berthelot is also represented by

a motivic ring spectrum Erig. As we already mentioned, the rigid syntomic cohomology of

Besser is defined using a kind of mapping cone complex whose components are differential

graded algebras (namely, it is the homotopy limit of the diagram in 3.5.1). Thus we cannot

apply the above criterion directly since we would need to define a multiplication on the

cone compatible with that of its components. To get around this problem we prove that

a homotopy limit of motivic ring spectra is a motivic ring spectrum. Hence the rigid

syntomic cohomology can be represented by a motivic ring spectrum as claimed.

As already mentioned, the existence of Esyn allows us to naturally extend the rigid

syntomic cohomology to singular schemes. By devissage, we show how to compute the

syntomic cohomology of a semistable curve. We warn the reader that this is (probably)

not the correct way to extend the cohomology to a semistable curve in the perspective

of the theory of p-adic L-functions.

In passing, we show some results about what we call the absolute rigid cohomology

given by

Hn
φ (X, i) := HomDb(F-isoc)(1, R0(X)(i)[n]),

where R0(X) is a complex of F-isocrystals such that Hn(R0(X)) = Hn
rig(X), for X a

scheme over a perfect field k.

The last application of the representability theorem of rigid syntomic cohomology is the

existence of a natural theory of rigid syntomic coefficients for R-schemes (§ 3.8). Using the

techniques of [12, § 17], we set up the theory of rigid syntomic modules: over any R-scheme

X , they are modules (in a strict homotopical sense) over the ring spectrum Esyn,X
obtained by pullback along the structural morphism of X/R. The corresponding category

Esyn-modX for various R-schemes X shares many of the good properties of the category

DMB, such as the complete Grothendieck six functors formalism. It receives a natural

realization functor from DMB, which is triangulated and monoidal (and commutes with

f ∗ and f!).
This construction might be the main novelty of our representability theorem. However,

to be complete, we should relate these modules with more concrete categories of
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coefficients, probably related with F-isocrystals. This relation will be investigated in

a future work.

1. Motivic homotopy theory

In this section, we first recall a basic construction of motivic homotopy theory, the

category of Morel motives (Definition 1.3.2) – the reader is referred to [12] for more

details. Then we prove a criterion for the representability of a cohomology theory by a

ring spectrum. This criterion is new, and it generalizes an analogous result from [11].

Throughout this section, S will be a base scheme, assumed to be noetherian finite

dimensional, and 3 will be a ring of coefficients. We will denote by Sm/S either the

category of smooth S-schemes of finite type or the category of such schemes which in

addition are affine (absolutely). Note that, equipped with the Nisnevich topology, the

two induced topoi are equivalent.

1.1. The effective A1-derived category

1.1.1. We let PSh(S,3) be the category of presheaves of 3-modules on Sm/S, and

C(PSh(S,3)) the category of complexes of such presheaves. Given such a complex K ,

a smooth S-scheme X and an integer n ∈ Z, we put

Hn(X, K ) := Hn(K (X)).

This is the cohomology of K computed in the derived category of PSh(S,3): if we denote

by 3(X) the presheaf of 3-modules represented by X , we get

Hn(X, K ) = HomD(PSh(S,3))(3(X), K [n]).

A closed pair will be a couple (X, Z) such that X is a smooth S-scheme and Z is a

closed subscheme of X – in fact one requires that X and (X − Z) are in Sm/S. We also

define the nth cohomology group of (X, Z) – equivalently, of X with support in Z – with

coefficients in K as

Hn
Z (X, K ) := Hn−1(Cone(K (X)→ K (X − Z))).

A morphism of closed pairs f : (Y, T )→ (X, Z) is a morphism of schemes f : Y → X such

that f −1(Z) ⊂ T . We say that f is excisive if it is étale, f −1(Z) = T and f induces an

isomorphism Tred→ Zred. The cohomology groups H∗Z (X, K ) are contravariant in (X, Z)
with respect to morphisms of closed pairs.

Definition 1.1.2. Let K be a complex of PSh(S,3).

(1) We say that K is Nis-local if, for any excisive morphism of closed pairs f : (Y, T )→
(X, Z), the pullback morphism

f ∗ : H∗Z (X, K )→ H∗T (Y, K )

is an isomorphism.
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(2) We say that K is A1-local if, for any smooth S-scheme X , the pullback induced by

the canonical projection p of the affine line over X

p∗ : H∗(X, K )→ H∗(A1
X , K )

is an isomorphism.

Following Morel, we define the effective A1-derived category over S with coefficients in

3 as the full subcategory of D(PSh(S,3)) made by complexes which are Nis-local and

A1-local. We will denote it by Deff
A1 (S,3).

1.1.3. Let us recall the following facts on the category defined above.

(1) Let Sh(S,3) be the category of sheaves of 3-modules on Sm/S for the Nisnevich

topology. Then Deff
A1 (S,3) is equivalent to the A1-localization of the derived category

D(Sh(S,3)), as defined in [11, § 1.1].

This comes from the fact that the pair of adjoint functors, whose left adjoint is the

associated Nisnevich sheaf a, induces a derived adjunction

a : D(PSh(S,3))� D(Sh(S,3)) : O

whose right adjoint O is fully faithful with essential image the complexes which are

Nis-local – this is classical; see for example [12, 5.2.10 and 5.2.13]. In particular,

Nis-local complexes can be described as those complexes K which satisfy Nisnevich

descent: for any Nisnevich hypercover P•→ X of any smooth S-scheme X , the

induced map

K (X)→ Tot
(
K (P•)

)
is a quasi-isomorphism – the right-hand side is the total complex associated with

the obvious double complex.

(2) The fact that the category Deff
A1 (S,3) can be handled in practice comes from its

description as the homotopy category associated with an explicit model category

structure on the category C(PSh(S,3)) of complexes on the Grothendieck abelian

category PSh(S,3).

• Weak equivalences (also called weak A1-equivalences) are the morphisms of

complexes f such that, for any complex K which is A1-local and Nis-local,

HomD(PSh(S,3))( f, K ) is an isomorphism.

• Fibrant objects are the complexes which are Nis-local and A1-local. Fibrations

are the morphisms of complexes which are epimorphisms and whose kernel is

fibrant.

For the proof that this defines a model category, we refer the reader to [10]:

we first consider the model category structure associated with the Grothendieck

abelian category PSh(S,3) (see [10, Example 2.4]) and we localize it with respect

to Nisnevich hypercovers and A1-homotopy [10, § 4]. Let us recall that a typical

example of cofibrant objects for this model structure is the presheaves of the form

3(X) for a smooth S-scheme X .
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We derive from this model structure the existence of fibrant (respectively, cofibrant)

resolutions: associated with a complex of presheaves K , we get a fibrant K f
(respectively, cofibrant Kc) and a map

K → K f (respectively, Kc → K ),

which is a cofibration (respectively, fibration) and a weak A1-equivalence. These

resolutions can be chosen to be natural in K .

This can be used to derive functors. In particular, the natural tensor product ⊗ of

C(PSh(S,3)) as well as its internal complex morphism Hom can be derived using

the formulas

K ⊗L L = Kc⊗ Lc, R Hom(K , L) = Hom(Kc, L f );

see loc. cit. §§ 3 and 4.6

1.2. The A1-derived category

1.2.1. We define the Tate object as the following complex of presheaves of 3-modules:

3(1) := coKer(3
s1∗
−→ 3(Gm))[−1], (1.2.1.a)

where s1 is the unit section of the group scheme Gm , considered as an S-scheme. Given

a complex K and an integer i > 0, we denote by K (i) the tensor product of K with the

ith tensor power of 3(1) (on the right).

As usual in the general theory of motives, one is led to invert the object 3(1) for

the tensor product. In the context of motivic homotopy theory, this is done using the

construction of spectra, borrowed from algebraic topology.

For any integer i > 0, we will denote by Σi the group of permutations of the set

{1, . . . , i}, Σ0 = 1.

Definition 1.2.2. A Tate spectrum (over S with coefficients in 3) is a sequence

E = (Ei , σi )i∈N such that the following hold.

• For each i ∈ N, Ei is a complex of PSh(S,3) equipped with an action of Σi .

• For each i ∈ N, σi is a morphism of complexes

σi : Ei (1)→ Ei+1,

called the suspension map (in degree n).

• For any integers i > 0, r > 0, the map induced by the morphisms σi , . . . , σi+r ,

Ei (r)→ Ei+r ,

is compatible with the action of Σi ×Σr , given on the left by the structural Σi -action

on Ei and the action of Σr via the permutation isomorphism of the tensor structure

on C(PSh(S,3)), and on the right via the embedding Σi ×Σr → Σi+r obtained by

identifying the sets {1, . . . , i + r} and {1, . . . , i} t {1, . . . , r}.

6 Note in particular that, according to [10, Proposition 4.11], the model category described above is a
monoidal model category which satisfies the monoid axiom.
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A morphism of Tate spectra f : E→ F is a sequence of Σi -equivariant maps ( fi : Ei →

Fi )n∈N compatible with the suspension maps. The corresponding category will be denoted

by Sp(S,3).
A morphism f as above is called a level weak equivalence if, for any integer i > 0,

the morphism of complexes fi is a quasi-isomorphism. We denote by DT ate(S,3) the

localization of Sp(S,3) with respect to level weak equivalences (See [11, § 1.4]).

Complexes and spectra are linked by a pair of adjoint functors (Σ∞, �∞) defined

respectively for a complex K and a Tate spectrum E as follows:

Σ∞K := (K (i))i∈N, �∞(E) = E0, (1.2.2.a)

where K (i) is equipped with the action of Σi by its natural action through the symmetry

isomorphism of the tensor structure on C(PSh(S,3)).

1.2.3. The category of Tate spectra can be described using the category of symmetric

sequences of C(PSh(S,3)): the objects of this category are the sequences (Ei )i∈N of

complexes of PSh(S,3) such that Ei is equipped with an action of Σi . This is a

Grothendieck abelian category on which one can construct a closed symmetric monoidal

structure (see [10, § 7]). Moreover, the obvious symmetric sequence

Sym(3(1)) := (3(i))i∈N

has a canonical structure of a commutative monoid.

The category Sp(S,3) is equivalent to the category of modules over Sym(3(1)) (see

again loc. cit.). Therefore, it is formally a Grothendieck abelian category equipped with

a closed symmetric monoidal structure. Note that the tensor product can be described

by the following universal property: to give a morphism of Tate spectra µ : E⊗F→ G
is equivalent to giving a family of morphisms

µi, j : Ei ⊗ F j → Gi+ j

which is Σi ×Σ j -equivariant and compatible with the suspension maps (see loc. cit.

Remark 7.2).

Definition 1.2.4. Let E be a Tate spectrum over S with coefficients in 3.

(1) We say that E is Nis-local (respectively, A1-local) if, for any integer i > 0, the

complex Ei is Nis-local (respectively, A1-local).

(2) We say that E is a Tate �-spectrum if the morphism of Deff
A1 (S,3) induced by

adjunction from σi ,

Ei → R Hom(3(1), Ei+1),

is an isomorphism (i.e., a weak A1-equivalence).

For short, we say that E is stably fibrant if it is an �-spectrum which is Nis-local and

A1-local.

We define the A1-derived category over S with coefficients in 3, denoted by DA1(S,3),
as the full subcategory of DT ate(S,3) made by the stably fibrant Tate spectra.
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1.2.5. Recall the following facts on the previous construction.

(1) The construction of DA1(S,3) through spectra is a classical construction derived

from algebraic topology (see [25]). In particular, the monoidal model structure

on the category C(PSh(S,3)) induces a canonical monoidal model structure on

Sp(S,3) whose homotopy category is precisely DA1(S,3). It is called the stable

model category.

Therefore DA1(S,3) is a symmetric monoidal triangulated category with internal

Hom. Moreover, the adjoint functors (1.2.2.a) can be derived:

Σ∞ : Deff
A1 (S,3)� DA1(S,3) : �∞. (1.2.5.a)

The functor Σ∞ is monoidal.7 Recall also that, given a Tate �-spectrum E as above

and an integer i > 0, we get

�∞(E(i)) = Ei . (1.2.5.b)

We will simply denote by 3 or 1 the unit of DA1(S,3) – instead of Σ∞3.

(2) In fact the triangulated categories of the form DA1(S,3) for various schemes S are

not only closed monoidal but they are equipped with the complete formalism of

Grothendieck six operations

( f ∗, f∗, f!, f !,⊗,Hom)

as established by Ayoub in [1].8

1.3. Triangulated mixed motives

1.3.1. In this section, 3 is a Q-algebra.

We recall the construction of Morel for deriving the triangulated category of mixed

motives from the category DA1(S,3) (see [12, 16.2] for details).

Let us consider the inverse map u of the multiplicative group scheme Gm , corresponding

to the map

OS[t, t−1
] → OS[t, t−1

], t 7→ t−1.

Recall from formula (1.2.1.a) the decomposition 3(Gm) = 3⊕3(1)[1], considered in

DA1(S,3). Given this decomposition, the map u∗ : 3(Gm)→ 3(Gm) can be written in

matrix form as (
1 0
0 ε1

)
.

Because 3(1)[1] is ⊗-invertible in DA1(S,3), there exists a unique endomorphism ε of 3

in DA1(S,3) such that ε1 = ε(1)[1].
Because u2

= 1, we get ε2
= 1. Thus we can define two complementary projectors in

EndDA1 (S,3)(3):

p+ =
1
2
.(13− ε), p− =

1
2
.(ε+ 13).

7In fact, the homotopy category DA1 (S,3), equipped with its left derived functor Σ∞, is universal for
the property that Σ∞ is monoidal and Σ∞(K (1)) is ⊗-invertible (see again [25]).
8Ayoub treats only the case where f is quasi-projective for the existence of the adjoint pair ( f!, f !). The
general case can be obtained by using the classical construction of Deligne as explained in [12, § 2.2].
The reader will also find a summary of the six operations formalism in loc. cit. Theorem 2.4.50.
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Given any object E in DA1(S,3), we deduce projectors p+⊗E, p−⊗E of E. Because

DA1(S,3) is pseudo-abelian,9 we deduce a canonical decomposition:

E = E+⊕E−,

where E+ (respectively, E−) is the image of p+⊗ E (respectively, p−⊗ E). The following

triangulated category was introduced by Morel.

Definition 1.3.2. An object E in DA1(S,3) will be called a Morel motive if E− = 0. We

denote by DA1(S,3)+ the full subcategory of DA1(S,3) made by Morel motives.

Note that, according to the above, the fact that E is a Morel motive is equivalent to

the property

ε⊗E = −1E; (1.3.2.a)

in other words, ε acts as −1 on E.

1.3.3. Recall the following facts, which legitimate the terminology of “Morel motives”.

(1) Obviously, the category DA1(S,3)+ is a triangulated monoidal subcategory of

DA1(S,3). Moreover, the six operations on DA1(−,3) induce similar operations

on DA1(−,3)+ which satisfy all of the six functors formalism.

(2) According to [12, 16.2.13], there is an equivalence of triangulated monoidal

categories:

DA1(S,3)+ ' DMB(S,3),

where DMB(S,3) is the triangulated category of Beilinson motives introduced

in [12, Definition 14.2.1]. In DMB(S,3), given a smooth S-scheme X , we simply

denote by M(X) the object corresponding to Σ∞3(X), and call it the motive of X .

Concretely, the above isomorphism means that, when S is regular, for any smooth

S-scheme X and any pair (n, i) ∈ Z2, one has a canonical isomorphism:

HomDA1 (S,3)+(Σ
∞3(X),3(i)[n]) ' K (i)

2i−n(X)⊗Q3, (1.3.3.a)

where K (i)
2i−n(X) denotes the ith Adams subspace of the rational Quillen K -theory

of X in homological degree (2i − n).10

Note in particular that, according to the coniveau spectral sequence in K -theory

and a computation of Quillen, a particular case of the above isomorphism is the

following one:

HomDA1 (S,3)+(Σ
∞3(X),3(n)[2n]) ' C Hn(X)⊗Z3, (1.3.3.b)

where the right-hand side is the Chow group of n-codimensional 3-cycles in X
(S is still assumed to be regular).

9This is, for example, an application of the fact it is a triangulated category with countable direct sums
(see [31, 1.6.8]).
10This formula was first obtained by Morel, but the proof has not been published. In any case, this is a
consequence of loc. cit.
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1.4. Ring spectra

1.4.1. Recall that a commutative monoid in a symmetric monoidal category (M,⊗,1)

is an object M , a unit map η : 1→ M and a multiplication map µ : M ⊗M → M , such

that the following diagrams are commutative:

Unit: Associativity: Commutativity:

M
1⊗η // M ⊗M

µ

��

M ⊗M ⊗M
1⊗µ //

µ⊗1

��

M ⊗M

µ

��

M ⊗M
µ

((
γ

��
M

M M ⊗M
µ // M M ⊗M

µ

66

where γ is the obvious symmetry isomorphism.

Definition 1.4.2. A weak ring spectrum (respectively, ring spectrum) E over S is a

commutative monoid in the symmetric monoidal category DA1(S,3) (respectively,

Sp(S,3)).11

1.4.3. A spectrum E in DA1(S,3) defines a bigraded cohomology theory on smooth

S-schemes X by the formula

En,i (X) = HomDA1 (S,3)(Σ
∞3(X),E(i)[n]).

The structure of a weak ring spectrum on E corresponds to a product in cohomology,

usually called the cup-product and defined as follows: given cohomology classes

α : Σ∞3(X)→ E(i)[n], β : Σ∞3(X)→ E( j)[m],

one defines the class α ∪β as the following composite:

Σ∞3(X)
δ∗
−→ Σ∞3(X)⊗Σ∞3(X)

α⊗β
−−→ E(i)[n]⊗E( j)[m]

µ
−→ E(i + j)[n+m].

Using this definition, one can check easily that the commutativity axiom of E implies the

following formula:

α ∪β = (−1)nm−i j .εi j .β ∪α,

where ε is the endomorphism of 3 introduced in Paragraph 1.3.1. In particular, if E is

a Morel motive, the product on E∗∗ is anti-commutative with respect to the first index

and commutative with respect to the second one. Note also the following result, which

will be used later.

Lemma 1.4.4. Let E be a weak ring spectrum with unit η and multiplication µ. Then the

following conditions are equivalent.

(i) E is a Morel motive.

(ii) η ◦ ε = −η.

11Ring spectra have slowly emerged in homotopy theory and the terminology is not fixed. Usually,
our weak ring spectra (respectively, ring spectra) are simply called ring spectra (respectively, highly
structured ring spectra).
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Proof. Let us remark that, according to the Unit property the following equalities hold:

µ ◦ (1E⊗ η) = 1E,

µ ◦ (1E⊗ (η ◦ ε)) = ε⊗E.

Thus the equivalence between (i) and (ii) directly follows from relation (1.3.2.a)

characterizing Morel motives.

Remark 1.4.5. Of course, a ring spectrum induces a weak ring spectrum. Concretely, in

the non-weak case, one requires that the diagrams of Paragraph 1.4.1 commutes in the

mere category of spectra, and not only up to weak homotopy. This makes the construction

of ring spectra more difficult than that of usual weak ring spectra.

1.4.6. Let us denote by Spring(S,3) the category of ring spectra. Because the category

Sp(S,3) is a complete and cocomplete monoidal category, Spring(S,3) is complete and

cocomplete. Moreover, the forgetful functor

U : Spring(S,3)→ Sp(S,3)

admits a left adjoint which we denote by F . The following result appears in [12, Theorem

7.1.8].

Theorem 1.4.7. Assume that 3 is a Q-algebra.

Then the category Spring(S,3) is a model category whose weak equivalences

(respectively, fibrations) are the maps f such that U ( f ) is a weak equivalence

(respectively, stable fibration) in the stable model category Sp(S,3) (see Par. 1.2.5).

We denote by Ho(Spring(S,3)) the homotopy category associated with this model

category.

1.4.8. For a given Q-algebra 3, recall the following consequences of this theorem.

(1) The pair of adjoint functors (F,U ) can be derived, and it induces adjoint functors:

LF : DA1(S,3)� Ho(Spring(S,3)) : U.

The essential image of the functor U lies in the category of weak ring spectra.

However, it is not essentially surjective on that category.

(2) As any homotopy category of a model category, the homotopy category

Ho(Spring(S,3)) admits homotopy limits and colimits (see [9, Intro. Theorem 1]). In

other words, any diagram of Spring(S,3) admits a homotopy limit and a homotopy

colimit.

1.4.9. A commutative monoid in the category C(PSh(S,3)) is usually called a

commutative differential graded 3-algebra with coefficients in the abelian monoidal

category PSh(S,3).
An N-graded commutative monoid in C(PSh(S,3)) is a sequence (Ei )i∈N of complexes

of presheaves equipped with a unit map η : 3→ E0 and multiplication maps µi j : Ei ⊗
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E j → Ei+ j for any pair of integers (i, j) such that the following diagrams commute:

Unit: Associativity: Commutativity:

Ei
1⊗η // Ei ⊗ E0

µi,0

��

Ei ⊗ E j ⊗ Ek
1⊗µ jk //

µi j⊗1

��

Ei ⊗ E j+k

µi, j+k

��

Ei ⊗ E j
µi j

((
γi j

��

Ei+ j

Ei Ei+ j ⊗ Ek
µi+ j,k // Ei+ j+k E j ⊗ Ei

µ j,i

66

where γi j is the obvious symmetry isomorphism. We then define bigraded cohomology

groups for any smooth S-scheme X and any couple of integers (n, i):

Hn(X, Ei ) = Hn(Ei (X)).

The above monoid structure induces an exterior product on these cohomology groups:

Hn(X, Ei )⊗ Hm(Y, E j )→ Hn+m(X ×S Y, Ei+ j ), (x, y) 7→ x × y.

Given any smooth S-scheme X , we let p : X ×Gm → X be the canonical projection and

consider for the next statement the following split exact sequence:

0→ Hn(X, Ei )
p∗
−→ Hn(X ×Gm, Ei )

πX
−→ H̃n(X ×Gm, Ei )→ 0,

where H̃n(X ×Gm, Ei ) := Coker(p∗) and πX is the canonical projection.

Proposition 1.4.10. Suppose that we are given an N-graded commutative monoid (Ei )i∈N
in C(PSh(S,3)) as above together with a section c of E1[1] over Gm satisfying the

following properties.

(1) Excision. For any integer i , Ei is Nis-local.

(2) Homotopy. For any integer i , Ei is A1-local.

(3) Stability. Let c̄ be the image of c in H1(Gm, E1). For any smooth S-scheme X and

any pair of integers (n, i), the map

Hn(X, Ei )→ H̃n+1(X ×Gm, Ei+1), x 7→ πX (x × c̄),

is an isomorphism.

Then there exists a ring spectrum E which is a stably fibrant Tate spectrum together with

canonical isomorphisms

HomDA1 (S,3)(Σ
∞3(X),E(i)[n]) ' Hn(X, Ei ) (1.4.10.a)

for integers (n, i) ∈ Z×N, functorial in the smooth S-scheme X and compatible with

products. Moreover, E depends functorially on (Ei )i∈N and c.

Assume that 3 is a Q-algebra. Let u : Gm → Gm be the inverse map of the group scheme

Gm , and denote by c̄′ the image of c in the group H̃1(Gm, E1). Then, under the above

assumptions, the following conditions are equivalent.
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(i) The Tate spectrum E is a Morel motive (i.e., defines an object in DMB(S,3),
Definition 1.3.2 and Par. 1.3.3).

(ii) The following equality holds in H̃1(Gm, E1): u∗(c̄′) = −c̄′.

Remark 1.4.11. (1) The two last properties should be called the Orientation property.

In fact, they can be reformulated by saying that E is an oriented ring spectrum

(see [12, Corollary 14.2.16]). Recall also this is equivalent to the existence of a

canonical morphism of groups:

Pic(X)→ H2(X, E1),

which is functorial in X (and even uniquely determined by c).

(2) The Stability axiom can be reformulated by saying that for any x ∈ Hn+1(X ×
Gm, Ei+1) there exists a unique couple (x0, x1) ∈ Hn+1(X, Ei+1)× Hn(X, Ei ) such

that

x = p∗(x0)+ x1× c̄′.

(3) Though we start with a positively graded complex (Ei )i∈N, we get a cohomology

theory which possibly has negative twists. These negative twists are given by the

following short exact sequence for i > 0:

0→ En,−i (X)→ Hn(X ×Gi
m, E0)→ Hn(X ×Gi−1

m , E0)→ 0,

where the epimorphism is given by the sum of the inclusions

Gi−1
m → Gi

m,

corresponding to set one of the coordinates of the target to 1.

Proof. We define the Tate spectrum E to be the complex of presheaves Ei in degree i
with trivial action of Σi . The section c defines a map of presheaves:

c′ : 3(1)→ 3(Gm)[−1]
c[−1]
−−−→ E1,

where the first map is given by the canonical inclusion. We define the suspension map of

E in degree i as the following composite:

σi : Ei (1) = Ei ⊗3(1)
1⊗c′
−−→ Ei ⊗ E1

µi,1
−−→ Ei+1.

One deduces from the commutative diagram called “Commutativity” of Paragraph 1.4.9
that the induced map Ei (r)→ Ei+r is Σi ×Σr -equivariant. So E is indeed a Tate

spectrum.

By definition, Assumptions (1) and (2) exactly say that E is Nis-local and A1-local. It

remains to check that it is an �-spectra. In other words, the map obtained by adjunction

from σi
σ ′i : Ei → R Hom(3(1), Ei+1)

is an isomorphism in Deff
A1 (S,3). It is sufficient to check that, for any smooth S-scheme

X and any integer n ∈ Z, the induced map

σ ′i∗ : Hom(3(X), Ei [n])→Hom(3(X),R Hom(3(1), Ei+1[n])

= Hom(3(X)⊗3(1), Ei+1[n]),
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where the morphisms are taken in Deff
A1 (S,3), is an isomorphism. According to the

definition, we can compute this map as follows:

Hom(3(X), Ei [n])→ Hom(3(X)⊗3(1), Ei+1[n]), x 7→ x × c̄′, (1.4.11.a)

where c̄′ is the class of the map c′ in Deff
A1 (S,3). Using the fact Ei is Nis-local and A1-local,

the source of this map is isomorphic to Hn(X, Ei ). Similarly, the group of morphisms

Hom(3(X)⊗3(Gm), Ei+1[n+ 1])

is isomorphic to Hn+1(X ×Gm, Ei+1). Under this isomorphism, the target of the above

map corresponds to H̃n+1(X ×Gm, Ei+1). Under these identifications, c̄′ = πX (c̄). Thus,

the fact that σ ′i is an isomorphism directly follows from Assumption (3).

According to this construction, the maps η and µi j induce a structure of a ring spectrum

on E (using in particular the description of the tensor product of spectra recalled in

Paragraph 1.2.3).

The isomorphism (1.4.10.a) follows using the adjunction (1.2.5.a) and the relation

(1.2.5.b) applied to the Tate �-spectrum E. The fact that it is functorial and compatible

with products is obvious from the above construction.

Let us finally consider the remaining assertion. Note that, according to what was just

said, the class c̄′ introduced in the beginning of the proof coincides with the class c̄′

which appears in the statement of the proposition. Under the isomorphism (1.4.10.a),

the canonical isomorphism

HomDA1 (S,3)(3,E)→ HomDA1 (S,3)(3(1),E(1))

corresponds to an isomorphism of the form

HomDeff

A1 (S,3)(3, E0)→ HomDeff

A1 (S,3)(3(1), E1) = H̃1(Gm, E1),

which is a particular case of the isomorphism (1.4.11.a) considered above. Thus, it sends

the unit map η of E to the class c̄′. Thus the equivalence of conditions (i) and (ii) follows

from Lemma 1.4.4.

Remark 1.4.12. This proposition is an extension of the construction given in [11, § 2.1].

The main difference is that we consider here theories in which the different twists are

not necessarily isomorphic. By contrast, we require the datum of a stability class here,

whereas we do not need a particular choice in op. cit.

Note also that a similar extension has appeared in [23] applied to Deligne cohomology.

2. Motivic ring spectra

In this section, we introduce one of the central notions of motivic homotopy theory, that

of the motivic ring spectrum. Our primary aim is to prove that to such an object is

associated a Bloch–Ogus cohomology theory, a result which has not yet appeared in the

literature of motivic homotopy theory. Moreover, we extend the formalism of Bloch and

Ogus by proving many more properties, relying on some of the main constructions of
motivic homotopy theory [1, 12, 14]. In the next section, we will give several examples
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of motivic ring spectra, among them the motivic ring spectrum representing the rigid

syntomic cohomology.

We fix a base scheme S (noetherian and finite dimensional) and a Q-algebra 3.

2.1. Gysin morphisms and regulators

Definition 2.1.1. A motivic ring spectrum (over S) is a ring spectrum E which is also a

Morel motive. In particular, it is an object of DMB(S,3).

If X is an S-scheme, we will denote by

En,i (X) := HomDMB(S,3)(M(X),E(i)[n])

the associated bi-graded cohomology groups.

Remark 2.1.2. (1) In the current terminology of motivic homotopy theory, what we

call a motivic ring spectrum should be called an oriented motivic ring spectrum

(see also Remark 1.4.11). This abuse of terminology is justified, as we will never

consider non-oriented ring spectra in this work.

(2) In the previous section, we have seen that there exists a stronger notion of a

ring spectrum, that of a stably fibrant Tate spectrum. The ring spectra that

we will construct will always satisfy this stronger assumption. Moreover, given

a ring spectrum in the sense of the above definition, it is always possible to find

a stably fibrant Tate spectrum which is isomorphic in DMB(S) to the first given

one (according to Theorem 1.4.7). On the other hand, this stronger notion will not

be used in this section, which is why we consider above the simpler notion. The

stronger notion will be needed in § 3.8.

2.1.3. Recall that Beilinson motivic cohomology for smooth S-schemes is the cohomology

represented by the unit object of DMB(S) = DMB(S,Q):

Hn,i
B (X) := HomDMB(M(X),1(i)[n]).

This group can also be described as the i-graded part for the γ -filtration of algebraic

rational K -theory:

Hn,i
B (X) = gri

γ K2i−n(X)Q.

See [12, 14.2.14].

By construction, the ringed cohomology E∗∗ admits a canonical action of Beilinson

motivic cohomology H∗∗B . Concretely, for any smooth S-scheme X and any couple of

integers (n, i), the unit map 1→ E induces a canonical morphism

σE : Hn,i
B (X) = HomDMB(M(X),1(i)[n])→ HomDMB(M(X),E(i)[n]) = En,i (X)

(2.1.3.a)

which is compatible with pullbacks and products. This is the higher cycle class map (or

equivalently the regulator) with values in the E-cohomology. Note also that this map can

be represented in the category DA1(S,Q) as a morphism of ring spectra:

σE : HB→ E (by abuse of notation we use the same symbol),
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which is unique according to [12, 14.2.16].

When n = i , it gives in particular the (usual) cycle class map:

σE : CHn(X)→ E2n,n(X) (2.1.3.b)

which is compatible with pullbacks and products of cycles as defined in [19].

2.1.4. A motivic ring spectrum E, considered as an object of DA1(S), is oriented (see

Remark 1.4.11). Thus, one can apply to it the orientation theory of A1-homotopy theory

(see [15] in the arithmetic case).

This implies that E∗∗ admits Chern classes, which are nothing else than the image of

the Chern classes in Chow theory through the cycle class map, and satisfies the projective

bundle formula (see [15, 2.1.9]). One also gets a Chern character map in DA1(S,Q):

chsyn : K GLQ
ch
−→ ⊕i∈ZHB(i)[2i]

σ
−→ ⊕i∈ZE(i)[2i],

where K GLQ is the ring spectrum representing rational algebraic K -theory over R and ch
is the isomorphism of [12, 14.2.7(3)]. This map induces the usual higher Chern character

(see [20]) for any smooth S-scheme X :

chn : Kn(X)Q→
∏
i∈N

E2i−n,i (X).

2.1.5. Given a motivic ring spectrum E, we can define a (cohomological) realization

functor of DMB(R):

E(−) : DMB(R)op
→ Qp-vs, M 7→ HomDMB(S)(M,E).

This shows that the E-cohomology of a smooth S-scheme X inherits the functorial

structure of the motive of X .

In particular, given a projective morphism of smooth S-schemes f : Y → X , there exists

a Gysin morphism on motives:

M(X)→ M(Y )(−d)[−2d],

where d is the dimension of f . This was constructed in [14], and several properties of

this Gysin morphism were proved there. Thus, after applying the functor E(−) above,

one gets the following.

Theorem 2.1.6. Consider the above notation. One can associate to f a Gysin morphism

in syntomic cohomology:

f∗ = E( f ∗) : En,i (Y )→ En−2d,i−d(X).

Moreover, one gets the following properties.

(1) [14, 5.14] For any composable projective morphisms f, g, ( f g)∗ = f∗g∗.

(2) ( Projection formula, [14, 5.18]) For any projective morphism f : Y → X and any

pair (x, y) ∈ E∗,∗(X)×E∗,∗(Y ), one has

f∗( f ∗(x).y) = x . f∗(y).
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(3) ( Excess intersection formula, [14, 5.17(ii)]) Consider a cartesian square of smooth

S-schemes:

Y ′
q //

g
��

X ′

f��
Y

p // X

such that p is projective. Let ξ/Y ′ be the excess intersection bundle12 associated

with that square, and let e be its rank.

Then for any y ∈ E∗,∗(Y ), one gets

f ∗ p∗(y) = q∗(ce(ξ).g∗(y)).

(4) For any projective morphism f : Y → X , the following diagram is commutative:

Hn,i
B (Y )

f∗ //

σsyn
��

Hn−2d,i−d
B (X)

σsyn
��

En,i (Y )
f∗ // En−2d,i−d(X).

Remark 2.1.7. •With the notation of Point (3), recall that ξ has dimension n−m,

where n (respectively, m) is the dimension of p (respectively, q). In particular, when

the square is transverse, i.e., n = m, one gets the more usual formula: f ∗ p∗ = q∗g∗.

• Point (2) can simply be derived from the preceding formula applied to the graph

morphism γ : Y → Y ×S X , given that γ ∗ is compatible with products.

• Point (4) shows in particular that, when i : Z → X is a closed immersion, i∗(1) =
σE([Z ]) is the fundamental class of Z in X . If Z is a smooth divisor, corresponding to

the line bundle L/X , one gets, in particular,

i∗(1) = c1(L).

This property determines the Gysin morphism uniquely in the case of a closed

immersion (see [14] or [32]).

When p : P → X is the projection of a projective bundle of rank n and canonical line

bundle λ, one gets, again applying Point (4),

p∗(c1(λ)
i ) =

1 if i=n

0 otherwise.

This fact, together with the projective bundle formula in syntomic cohomology,

determines the morphism p∗ uniquely.

By construction, the Gysin morphism f∗ for any projective morphism f is completely

determined by the two properties above.

12Recall from loc. cit. that one defines ξ as follows. Let us choose a closed embedding i : Y → P into a
projective bundle over X , and let Y ′ → P ′ be its pullback over X ′. Let N (respectively, N ′) be the normal
vector bundle of Y in P (respectively, Y ′ in P ′). Then, as the preceding square is cartesian, there is a

monomorphism N ′ → g−1(N ) of vector bundles over Y ′, and one puts ξ = g−1(N )/N ′.
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• For syntomic cohomology, Point (4) was conjectured by Besser [7, Conjecture 4.2]

(in the case of proper morphisms), and Theorem 1.1 in loc. cit. is conditional to the

conjecture. The latter result concerns the regulator of a proper and smooth surface S
over R. We also note that Point (4) has already been used (in the projective morphism

case, although stated for proper maps) in [28, p. 505], but the reference given there

is a draft of [13], which turns to be different from the published version and does not

contain the above statement or its proof.

Example 2.1.8. Let f : Y → X be a finite morphism between smooth connected

S-schemes. Let d be the degree of the extension of the corresponding function fields.

Then one gets the degree formula in E-cohomology: for any x ∈ E∗,∗(X),

f∗ f ∗(x) = d.x .

Indeed, according to 2.1.6(1),

f∗ f ∗(x) = f∗(1. f ∗(x)) = f∗(1).x .

Then one gets f∗(1) = d from 2.1.6(4) and the degree formula in Beilinson motivic

cohomology.

As a corollary of Point (4) of the preceding theorem, one obtains the Riemann–Roch

formula in E-cohomology.

Corollary 2.1.9. Let f : Y → X be a projective morphism between smooth S-schemes. Let

τ f be the virtual tangent bundle of f in K0(X): τ f = [TX ] − [TY ], the difference of the

tangent bundle of X/S with that of Y/S. Then, for any element y ∈ Kn(Y )Q, one gets the

following formula:

chE( f∗(y)) = f∗(td(τ f ). chE(y)),

where td(τ f ) is the Todd class of the virtual vector bundle τ f in E-cohomology (defined

for example as the image of the usual Todd class in Chow groups by the cycle class map).

In fact, this corollary is deduced from the Riemann–Roch formula in motivic
cohomology after applying to it the higher cycle class and applying Point (4) of the

previous theorem.

2.2. The six functors formalism and Bloch–Ogus axioms

In this section, we will recall some consequences of the Grothendieck six functors

formalism established for Beilinson motives (see [12, 2.4.50] for a summary), and apply

this theory to the spectra considered in this paper. We will consider only separated

S-schemes of finite type over S. We will also consider an abstract object E of DMB(S).

2.2.1. We associate with E four homology/cohomology theories defined for an S-scheme

X with structural morphism f and a pair of integers (n, i) as follows.
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Cohomology En,i (X) = Hom(1S, f∗ f ∗E(i)[n])
Homology En,i (X) = Hom(1S, f! f !E(−i)[−n])
Cohomology with compact support En,i

c (X) = Hom(1S, f! f ∗E(i)[n])
Borel–Moore homology EBM

n,i (X) = Hom(1S, f∗ f !E(−i)[−n])

We will use the terminology c-cohomology (respectively, BM-homology) for cohomology

with compact support (respectively, Borel–Moore homology).

Note that these definitions, applied to the unit object 1 of DMB(S), yield the four

corresponding motivic theories. Also, these definitions are (covariantly) functorial in E.

In particular, if E admits a structure of a monoid in DMB(S) (i.e., E is a ring spectrum),

the unit map η : 1→ E yields regulators in all four theories.

When X/S is proper, as f∗ = f!, one gets identifications:

En,i (X) = En,i
c (X), EBM

n,i (X) = En,i (X).

2.2.2. Functoriality properties. We consider a morphism of S-schemes:

Y
f //

q ��

X

p��
S

Using the adjunction map ad f : 1→ f∗ f ∗ (respectively, ad ′f : f! f !→ 1), we immediately

obtain that cohomology is contravariant (respectively, homology is covariant) by

composing on the left by p∗ (respectively, p!) and on the right by p∗ (respectively, p!).
When f is proper, f! = f∗. Using again ad f , ad ′f , one deduces that c-cohomology

(respectively, BM-homology) is contravariant (respectively, contravariant) with respect

to proper maps.

When f is smooth of relative dimension d, one has the relative purity isomorphism:

f ! ' f ∗(d)[2d]

(see in [12]: Theorem 2.4.50 for the statement and § 2.4 for details on relative purity). In

particular, one derives from ad f and ad ′f the following maps:

f∗ : En,i
c (X)→ En−2d,i−d

c (Y ), f ∗ : EBM
n,i (X)→ EBM

n+2d,i+d(Y ).

Finally, when f is proper and smooth of relative dimension d, one gets, in addition,

f∗ : En,i (X)→ En−2d,i−d(Y ), f ∗ : En,i (X)→ En+2d,i+d(Y ).

Let us summarize the situation.

Theory Covariance (degree) Contravariance (degree)
Cohomology Smooth proper, (-2d,-d) Any
Homology Any Smooth proper, (+2d,+d)
Cohomology with Smooth, (-2d,-d) Proper
compact support
Borel–Moore Proper Smooth, (+2d,+d)
homology
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Remark 2.2.3. The fact that the functorialities constructed above are compatible with

composition is obvious except when a smooth morphism is involved. This last case follows

from the functoriality of the relative purity isomorphism proved by Ayoub in [1].

When considering one of the four theories associated with E, one can mix the two kinds

of functoriality in a projection formula as usual. In fact, given a cartesian square

Y ′
g //

q
��

X ′

p
��

Y
f // X

such that f is proper and smooth (or f smooth and g proper when considering Ec or

EBM), one obtains, respectively,

• f ∗ p∗ = q∗g∗ for the two homologies,

• p∗ f∗ = g∗q∗ for the two cohomologies.

This is a lengthy check coming back to the definition of the relative purity isomorphism.

The essential fact is that

g−1(TY/X ) = TY ′/X ′ ,

where TY/X (respectively, TY ′/X ′) is the tangent bundle of f (respectively, g).

2.2.4. Products. Let us now assume that E is a ring spectrum, with unit map η : 1S → E
and product map µ : E⊗E→ E.

Of course, for any S-scheme X with structural map f , we can define a product on

cohomology, sometimes called the cup-product:

En,i (X)⊗Em, j (X)→ En+m,i+ j (X), (x, y) 7→ xy = x ∪ y;

given cohomology classes

x : 1X → f ∗E(i)[n], y : 1X → f ∗E( j)[m],

we define xy as the following composite map:

1X
x⊗y
−−→ f ∗(E)(i)[n]⊗ f ∗(E)( j)[m] = f ∗(E⊗E)(i + j)[n+m]

µ
−→ f ∗(E)(i + j)[n+m].

This product is obviously commutative and associative. Note one can also define an

exterior product on cohomology as follows:

En,i (X)⊗Em, j (Y )→ En+m,i+ j (X ×S Y ), (x, y) 7→ p∗1(x).p
∗

2(y),

where p1 (respectively, p2) is the projection X ×S Y/X (respectively, X ×S Y/Y ).

One can also define exterior products on c-cohomology. Consider a cartesian square

X ×S Y
f ′ //

g′ �� h
$$

Y
g
��

X
f
// S
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of separated morphisms of finite type. We define the following product on c-cohomology:

En,i
c (X)⊗Em, j

c (Y )→ En+m,i+ j
c (X ×S Y ), (x, y) 7→ x × y,

which associates to any maps

x : 1S → f! f ∗E(i)[n], y : 1S → g!g∗E( j)[m],

the following composite map x × y:

1S
x⊗y
−−→ f! f ∗(E)(i)[n]⊗ g!g∗(E)( j)[m]

' f!
(

f ∗(E)(i)[n]⊗ f ∗g!g∗(E)
)
(i + j)[n+m]

' f!
(

f ∗(E)(i)[n]⊗ g′
!

f ′∗g∗(E)
)
(i + j)[n+m]

' f!g′!
(
g′∗ f ∗(E)(i)[n]⊗ f ′∗g∗(E)

)
(i + j)[n+m]

= h!h∗(E⊗E)(i + j)[n+m]
µ
−→ h!h∗(E)(i + j)[n+m],

where the first and the third isomorphisms follow from the projection formula [12,

2.4.50(v)] and the second one from the exchange isomorphism [12, 2.4.50(iv)].

One can check the following formulas:

(x × y)× z = x × (y× z), x × y = y× x,

through the respective isomorphisms

(X ×S Y )×S Z ' (X ×S Y )×S Z , X ×S Y ' Y ×S X.

Further, because c-cohomology is contravariant with respect to proper morphism, given

any S-schemes X (separated of finite type), the diagonal embedding δ : X → X ×S X
allows one to define an inner product on c-cohomology:

En,i
c (X)⊗Em, j

c (X)→ En+m,i+ j
c (X), (x, x ′) 7→ δ∗(x × x ′).

When X/S is proper, one can check that this product coincides with the cup-product on

cohomology.

Remark 2.2.5. Let f : Y → X be a proper smooth morphism. According to the projection

formulas established in Remark 2.2.3, one can check that, for any couple (y, x) either in

En,i (Y )×Em, j (X) or in En,i
c (Y )×Em, j

c (X), one gets the following usual projection formula

(for products):
f∗(x . f ∗(y)) = f∗(x).y.

In fact, in each case, one uses the relevant formula of Remark 2.2.3, the external product,

and the following formulas:

y× f ∗(x) = (1Y ×S f )∗(y× x), f∗(y)× x = ( f ×S 1X )∗(y× x).

2.2.6. Cap product. One can extend the cohomology theory associated with E to a theory

with support. Given any closed immersion of S-schemes,

Z

g %%

i // X,

fyy
S
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one puts

En,i
Z (X) = Hom(i∗(1Z ), f ∗E(i)[n]) = Hom(1Z , i ! f ∗E(i)[n]).

This theory satisfies all the usual properties. We refer the reader to [15, § 1.2] for a

detailed account.

Assuming again that E is a ring spectrum with product map µ : E⊗E→ E , one

defines, following Bloch and Ogus, [8], the cap-product with supports:

EBM
n,i (X)⊗Em, j

Z (X)→ EBM
n−m,i− j (Z), (x, z) 7→ x ∩ z.

Let us first introduce classical pairing of functors (see [17, IV, § 1.2]): given any objects

A and B of DMB(S), one considers the following composite map:

f!( f !(A)⊗ f ∗(B))
Ex
−→ [ f! f !(A)]⊗ B

ad ′f
−−→ A⊗ B,

where the first map is the isomorphism of the projection formula [12, 2.4.50] and the

second one is the counit of the adjunction ( f!, f !). One thus deduces by adjunction the

following pairing:

f !(A)⊗ f ∗(B)
η f
−→ f !(A⊗ B).

Thus, given maps

x : 1X → f !(E), z : i∗(1Z )→ f ∗(E)
one defines x ∩ z from the following composite map:

i∗(1Z )
x⊗z
−−→ f !(E)⊗ f ∗(E)

η f
−→ f !(E⊗E) µ

−→ f !(E),

using i∗ = i!, the adjunction (i!, i !), and i ! f ! = g!.

Remark 2.2.7. Consider a cartesian square of S-schemes

T k //

g
��

Y

f
��

Z i // X

such that i is a closed immersion and f is proper. Then, for any couple (y, z) ∈ EBM
n,i (X)⊗

Em, j
Z (X), one obtains the following formula:

f∗(y) ∩ z = g∗(y ∩ f ∗(z)).

2.2.8. Suppose again that E is a ring spectrum with unit map η : 1S → E.

Let f : X → S be a smooth S-scheme of relative dimension d. Then, according to [12,

2.4.50(iii)], one obtains a canonical isomorphism of functors:

p f : f !→ f ∗(d)[2d].

In particular, one gets a canonical map

ηX : 1X = f ∗(1S)
f ∗(η)
−−−→ f ∗(E)

p−1
f
−−→ f !(E)(−d)[−2d]

which corresponds to a homological class ηX ∈ EBM
2d,d(X). The following result is now a

tautology.
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Proposition 2.2.9. Consider the above assumptions, and let Z ⊂ X be any closed subset.

Then the map

En,i
Z (X)→ EBM

2d−n,i−n(Z), z 7→ ηX ∩ z

is an isomorphism.

One can now summarize some of the main properties we have proved so far as follows.

Corollary 2.2.10. The couple of functors
(
E∗∗, EBM

∗∗

)
forms a Poincaré duality theory

with supports in the sense of Bloch and Ogus [8, Definition 1.3].

This is the case in particular for syntomic cohomology and syntomic BM-homology.

2.2.11. Descent theory. Recall (see [12, § 3.1]) that a diagram of S-schemes (X , I ) is

the data of a small category I and a functor X : I → S . A morphism of diagrams ϕ =

(α, f ) : (X , I )→ (Y, J ) is the data of a functor f : I → J and a natural transformation

α : X → f ∗(Y), where f ∗(Y) = Y ◦ f .

Accorded to [12, § 3.1], the fibered triangulated category DMB can be extended to the

category of diagrams. Moreover, for any morphism of diagrams ϕ : (X , I )→ (Y, J ), one

has an adjoint pair of functors:

ϕ∗ : DMB(Y, J )� DMB(X , I ) : ϕ∗.

Consider a diagram of S-schemes (X , I ) and the canonical morphism ϕ : (X , I )→ (S, ∗),
where ∗ is the final category. Then one defines the cohomology of (X , I ) as

En,i (X , I ) = Hom(1, ϕ∗ϕ∗(E)(i)[n]).

This is contravariant with respect to morphisms of diagrams.

In particular, one has extended the cohomology E∗,∗ to simplicial S-schemes. The

h-topology was introduced by Voevodsky in [35]. Recall that an h-cover f : Y → X
of S-schemes is a universal topological epimorphism (e.g., faithfully flat maps, proper

surjective maps). Then the h-descent theorem for Beilinson motives [12, 14.3.4] states

the following.

For any quasi-excellent S-scheme X and any hypercover p : X → X for the h-topology,
the canonical map

p∗ : En,i (X)→ En,i (X )

is an isomorphism. In particular, one gets the usual spectral sequence:

E p,q
1 = Ep,i (Xq)⇒ Ep+q,i (X).

Remark 2.2.12. As already remarked in [10], the preceding descent theory, together with

De Jong resolution of singularities, shows that, in the case where S is the spectrum

of a field (not necessarily perfect), the cohomology E∗,∗ is uniquely determined by its

restriction to smooth schemes.
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3. Syntomic spectrum

In this section, we construct several motivic ring spectra (see Definition 2.1.1):

EFdR,Erig,Eφ,Esyn. First, for a field K of characteristic zero, we construct EFdR

representing the filtered part of the de Rham cohomology of a K -scheme; i.e.,

En,i
FdR(X) := HomDA1 (η,Q)(Σ

∞Q(X),EFdR(i)[n]) ' F i Hn
dR(X).

Then we define Erig, which represents the rigid cohomology of Berthelot. This was

already proved in [11] in a different way. For both EFdR and Erig, we use the criteria of

Proposition 1.4.10.

Finally, we get a motivic ring spectrum Esyn for the rigid syntomic cohomology as a

homotopy limit of a diagram of ring spectra.

3.1. Cosimplicial tools

3.1.1. Let 1 be the category of finite ordered sets [n] := {0, . . . , n} as objects and

monotone non-decreasing functions as morphisms. Let δi (n) : [n− 1] → [n] (respectively,

σi (n) : [n] → [n− 1]) be the usual13 (co)face (respectively, (co)degeneracy) map. When

there is no ambiguity, we will simply write δi , σi . Given a category C , a simplicial

(respectively, cosimplicial) object of C is a functor from 1◦ (respectively, 1) to C .

For instance, let An = Q[T0, . . . , Tn]/
(∑

Ti − 1
)
. Then this is a simplicial Q-algebra in

an obvious way. It follows that the associated differential graded algebra (dga) of Kähler

differentials

ωn := �
•

An/Q n > 0 (3.1.1.a)

is a simplicial dga over Q. We will denote by δi
= δ∗i (respectively, σ i

= σ ∗i ) the structural

morphisms.

Now let M be a cosimplicial abelian group and s M the associated simple complex

(s M i
= M[i] and the differentials are the alternate sums of the coface morphisms).

Its standard normalization N M is the subcomplex of s M s.t. N q M :=
⋂

i ker(σi ) ⊂ Mq .

Then inclusion N M → s M is a homotopy equivalence. Now, if M is also a cosimplicial

commutative monoid, the Alexander–Whitney product14 gives a (differential graded)

monoid structure on s M and N M , but this is not necessarily (graded) commutative.

Thus we consider the following construction due to Thom and Sullivan. Let M be a

cosimplicial dga. We define
Ñ q M ⊂

∏
m

ω
q
m ⊗Mm

as the submodule whose elements are sequences (xm)m>0 such that

(Id⊗δi )xm = (δ
i
⊗ Id)xm+1, (σ i

⊗ Id)xm = (Id⊗σi )xm+1,

and define the differentials D : Ñ q M → Ñ q+1 M by D = ((−1)q Id⊗d)+ Id⊗∂), where d
(respectively, ∂) is the differential of M (respectively, ωm). With the above notation, if M

13i.e., the image of δi (n) is [n] \ {i}.
14This is given as follows. Let δ− : [q] → [q + q ′] (respectively, δ+ : [q ′] → [q]) be the map with image
{0, 1, . . . , q} (respectively, {q, q + 1, . . . , q + q ′}). Then define a ∗ b := δ−(a) · δ+(q).
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is further a cosimplicial commutative monoid ,then Ñ M is a commutative monoid too.

Namely, we can define

Ñ M ⊗ Ñ M → Ñ M (3.1.1.b)

induced by (α⊗m)⊗ (α′⊗m′) = α∧α′⊗ (m ·m′).
Moreover, the complex Ñ M is quasi-isomorphic to the standard normalization N M

(and then to s M).15

We can extend the above constructions to the setting of cosimplicial dg abelian groups.

Given such an M = M pq (where q is the cosimplicial parameter), then s M (respectively,

N M , Ñ M) is naturally a double complex, and we can apply the total complex functor,

denoted by tot, to obtain a dg abelian group.

Now we are ready to state a technical result well known to the specialists.

Proposition 3.1.2 (see [24], [26, Appendix]). Let M be a cosimplicial (commutative) dga

over Q. Then there exists a canonical (commutative) dga Ñ M and a quasi-isomorphism∫
: Ñ M → s M inducing an isomorphism of (commutative) dg algebras in cohomology

H(
∫
) : H(Ñ M)→ H(s M).

3.1.3. (Godement resolutions) Let u : P → X be a morphism of Grothendieck sites and

let P∼ (respectively, X∼) be the category of abelian sheaves on P (respectively, X). Then

we have a pair of adjoint functors (u∗, u∗), where u∗ : X∼→ P∼, u∗ : P∼→ X∼. For any

object F of X∼, we can define a cosimplicial object B∗(F) whose component in degree n
is (u∗u∗)n+1(F).16

Proposition 3.1.4. Let u : P → X be a morphism of sites and F a complex of sheaves on

X . If u∗ is exact and conservative, then the following hold.

(1) The complex GdmP (F) := s B∗(F) is a functorial flask resolution of F .

(2) If F is a Q-linear sheaf, the Thom–Sullivan normalization G̃dmP (F) := Ñ B∗(F) is

a functorial resolution of F .

(3) If F is a sheaf of (commutative) dga over Q, then the complex G̃dmP (F) =
Ñ B∗(F) is a sheaf of commutative dga, and the canonical isomorphism H∗(X,F) ∼=
H∗(0(X G̃dmF)) is compatible with respect to the multiplicative structure.

15The isomorphism is induced by the integration map
∫
: ω•n ⊗Mn

→ Q[−n]⊗Mn defined by

(dT1 ∧ · · · ∧ dTn)⊗m 7→
1
n!
⊗m.

16The cosimplicial structure is defined as follows. First, let η : IdX∼ → u∗u∗ and ε : u∗u∗ → IdP∼ be the
natural transformations induced by adjunction.

Endow Bn(F) := (u∗u∗)n+1(F) with codegeneracy maps

σ n
i := (u∗u

∗)i u∗εu∗(u∗u∗)n−1−i
: Bn(F)→ Bn−1(F) i = 0, . . . , n− 1,

and cofaces
δn−1
i := (u∗u∗)iη(u∗u∗)n−i

: Bn−1(F)→ Bn(F) i = 0, . . . , n.
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Proof. Since u∗ is exact and conservative, to show that the canonical map bF : F →
s B∗(F) is a quasi-isomorphism is sufficient to prove that u∗bF is a quasi-isomorphism.

This follows from the fact that the augmented complex

u∗F → u∗B0(F)→ u∗B1(F)→ · · ·

is null-homotopic: the homotopy hi
: u∗(u∗u∗)i (F)→ u∗(u∗u∗)i−1(F) is induced by the

counit u∗u∗→ Id, and one checks easily that Id = d i−1
◦ hi
+ hi+1

◦ d i , where d i is given

by the alternating sum of cofaces. The rest follows directly from Proposition 3.1.2 and

the existence of a family of canonical maps

∪n : Bn(F)⊗ Bn(G)→ Bn(F ⊗G)

compatible with the cosimplicial structure. We leave it to the reader to check that, if

F∗ is further a (commutative) dga on X∼, then B∗(F∗) is a cosimplicial (commutative)

dga.17

3.1.5 (Enough points). We will use the above construction in the case when X is the

site associated to a scheme or a dagger space (in the case of a dagger space we take

the site associated to its G-topology). In both cases, we let P be the category Pt(X) of

site-theoretical points of X . For a general X , the canonical map u : Pt(X)→ X is not

conservative. The latter property is guaranteed in the two cases we are interested in. It

suffices to exhibit a subcategory C of Pt(X) (with the discrete topology) such that u
restricted to C is conservative. When X is associated to a scheme (respectively, a dagger

space) we let C be the category of its Zariski points (respectively, its Berkovich or adic

points). This is enough, as explained in [13, § 3] or [34, § 3].

From now on, we will simply write G̃dm instead of G̃dmPt(X), with X as above.

3.2. De Rham cohomology

3.2.1 (The Hodge Filtration). We recall some well-known facts about algebraic de Rham

cohomology (see for instance [27]). Let K be a field of characteristic zero, and let

X be a smooth and algebraic K -scheme. Fix a compactification g : X → X̄ such that

the complement D = X̄ \ X is a normal crossing divisor.18 Then consider the complex

�•
X̄/K
〈D〉 of differential forms on X̄ with logarithmic differential poles along D. The

natural inclusion �•
X̄/K
〈D〉 ⊂ g∗�•X/K is a quasi-isomorphism, and we define the Hodge

filtration on the de Rham cohomology of X by

F i Hn
dR(X/K ) := Hn(X̄ , F i�•X̄/K 〈D〉),

where F i�•
X̄/K
〈D〉 is the stupid filtration.

17In fact, one needs to take care of the signs:

∪
ab
n : Bn(Fa)⊗ Bn(Fb)→ Bn(Fa

⊗ Bn(Fb)), ∪
ab
n = (−1)na

∪n .

18Such a compactification exists by Nagata’s compactification theorem and the result of Hironaka on
the resolution of singularities.
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A remarkable result of Deligne says that (for K = C) the Hodge filtration does not

depend on the chosen compactification. Moreover, given a morphism f : X → Y of

smooth algebraic schemes over C, the induced morphism on the de Rham cohomology

is strictly compatible w.r.t. the Hodge filtrations.19 Then the same holds for Hn
dR(X/K )

where K ⊂ C is a field of characteristic zero.

Proposition 3.2.2. Let X be a smooth K -scheme.

(1) For any normal crossing compactification X̄ of X , the resolution G̃dm(�•
X̄/K
〈D〉)

(notation as in § 3.1.5) gives a sheaf of filtered commutative dga20 and

F i Hn
dR(X/K ) ∼= Hn(0(X̄ , G̃dm(F i�•

X̄/K
〈D〉)).

(2) The complexes

EFdR,i (X) := colim
X̄

0(X̄ , G̃dm(F i�•X̄/K 〈D〉) (3.2.2.a)

E ′dR(X) := colim
X̄

0(X̄ , G̃dm(g∗�•X )) (3.2.2.b)

EdR(X) := 0(X, G̃dm(�•X )) (3.2.2.c)

are functorial in X , and there are functorial quasi-isomorphisms21

EFdR,0(X)→ E ′dR(X)← EdR(X).

Proof. By definition, �•
X̄/K
〈D〉 is a commutative (filtered) dga. Let

F i G̃dm(�•X̄/K 〈D〉) = G̃dm(F i�•X̄/K 〈D〉).

Then G̃dm(�•
X̄/K
〈D〉) is a (sheaf of) filtered commutative dga by Proposition 3.1.4. This

concludes the proof of point (1).

As the complex of sheaves �•
X̄/K
〈D〉 is functorial22 with respect to the pair (X, D),

the same is true for F i G̃dm(�•
X̄/K
〈D〉). Note that the category of normal crossing

compactifications is filtered. Hence the above colimit is quasi-isomorphic to any of its

elements. What remains to prove follows directly from the definitions.

Example 3.2.3. Let X = P1
K \ {0,∞}. By construction, EFdR,1(X) is a complex starting

in degree 1. Let dlog ∈ 0(P1
K , �

1
P1

K
〈0,∞〉) = H0(EFdR,1(X)[1]) = H1(EFdR,1(X)) be the

section defined by dT/T , for a local parameter T at 0. Note that the class of d log is a

generator for F1 H1
dR(X)

∼= K . We will denote it by cFdR
1 .

Proposition 3.2.4. There exists a motivic ring spectrum EFdR whose components are the

complexes EFdR,i and such that

F i Hn
dR(X) = HomDA1 (K ,Q)(1,EFdR(i)[n]).

19A morphism f : A→ B of filtered vector spaces is strict if f (F i A) = f (A)∩ F i B.
20Set F i G̃dm = G̃dm F i .
21We introduce E ′dR since there is no natural map between EdR and EFdR,i .
22Morphisms of pairs are morphisms of commutative squares.
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Proof. By the previous lemma, the family EFdR,i forms an N-graded commutative

monoid. The dlog of the above example gives a morphism Q(Gm,K )→ EFdR,1. According

to Proposition 1.4.10, we have to prove the following.

(Excision and homotopy) EFdR,i is both Nis-local and A1-local. We know that EdR is

Nis/A1-local, so the same holds for EFdR,0. The same holds for EFdR,i , since the canonical

maps EFdR,i → EFdR,0 induce the Hodge filtration on cohomology. Then thanks to the

strictness it is easy to conclude (see also the paragraph following this proof).

(Stability) The cup product with dlog = dT/T induces an isomorphism

Hn(Ei (X)) ∼= Hn+1(Ei+1(Gm × X))/Hn+1(Ei+1(X)).

Let g : X → X̄ be a normal crossing compactification with complement D. Then

Gm × X → P1
× X̄ is a normal crossing compactification with complement E = {0,∞}×

X̄ ∪P1
× D. We have to prove that �P1×X̄ 〈E〉 = p∗1�P1〈0,∞〉⊗ p∗2�X̄ 〈D〉. This can be

checked locally by choosing étale coordinates. Then it is easy to prove the filtered

Künneth decomposition F i+1 Hn+1
dR (Gm × X) = H0

dR(Gm)⊗ F i+1 Hn+1
dR (X)⊕ H1

dR(Gm)⊗

F i Hn
dR(X), since F j H j

dR(Gm) = H j
dR(Gm) ∼= K for j = 0, 1. As H j

dR(Gm) = K d log, the

claim is proved.

(Orientation) This is obvious: the morphism of A1
\ {0} induced by T 7→ 1/T sends

dT/T to −dT/T as an element of H0(P1
K , �

1
P1

K
〈0,∞〉) ⊂ EFdR,1(A1

\ {0}).

3.2.5 (Variation on dagger spaces). Let K be a p-adic field (i.e., a finite extension of

Qp), and let R be its valuation ring. We define a canonical commutative dga R0dR(X)
for the de Rham cohomology of a dagger space X over K . Consider the following

algebra:

Wn :=

{∑
ν

aνT ν ∈ K [[T1, . . . , Tn]]|∃ρ > 1, |aν |ρ|ν|→ 0

}
.

According to Grosse-Klönne [21], a K -algebra A is a dagger algebra if it is a quotient of

Wn for some n. To such an A we can associate the spectrum of maximal points Spm(A)
which is a G-ringed space. One has a universal K -derivation of A into finite A-modules,

d : A→ �1
A/K , giving rise to the de Rham complex �X /K on a general dagger space X .

Assuming X to be smooth, we can set

Hn
dR(X ) := Hn(X , �X /K ).

It follows from Proposition 3.1.2 and § 3.1.5 that the complex R0dR(X ) :=
0(X , G̃dm�•X /K ) is a functorial commutative dga.

Now let X be a smooth R-scheme. We can associate to it two different dagger spaces:

one is the dagger analytification (X K )
† of its generic fiber; the other is the Raynaud fiber

(Xw)K of the weakly formal scheme Xw associated to X . There is a natural inclusion

(Xw)K ⊂ (X K )
†. Further, there is a map of sites ι : (X K )

†
→ X K as in the classical

analytification case.
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3.3. Rigid cohomology

We recall the construction given by Besser as rephrased in [34], since there are some

simplifications. For the sake of the readers we give all the required definitions. We fix

a p-adic field K and denote by R (respectively, k) is its valuation ring (respectively, its

residue field).

3.3.1. After the work of Grosse-Klönne one can compute the rigid cohomology of

Berthelot via dagger spaces [21]. The method is as follows. Let X be a smooth k-scheme.

Then we can choose a closed embedding X → Y in a weak formal R-scheme Y having

smooth special fiber Yk . We call such an embedding a rigid pair, and we denote it by

(X,Y). There is a specialization map sp : YK → Y, where YK is the generic fiber of Y.

We write ]X [Y := sp−1(X), called the tube of X in Y.

A morphism of rigid pairs (X,Y), (X ′,Y ′) is a commutative diagram

]X [Y

sp
��

F // ]X ′[Y ′

sp
��

X
f
// X ′

We denote by R P the category of rigid pairs.

The datum of a rigid pair (X,Y) is sufficient to compute the rigid cohomology of X
(with K coefficients) as follows:

Hn
rig(X/K ) = Hn

dR(]X [Y ) = Hn(]X [Y , �•]X [Y/K ).

The de Rham complex �•
]X [Y/K is functorial in (X,Y), and its cohomology is

independent up to isomorphism of the choice of Y. Since the tube of X in Y is a smooth

dagger space, we get Hn
rig(X/K ) = Hn(R0dR(]X [Y )) (see 3.2.5).

Proposition 3.3.2. (1) For any p-adic field K with residue field k, there exists a ring

object R0rig,K in the category Deff
A1 (Spec k,Q) that represents rigid cohomology (with

coefficients in K ): i.e., for any affine and smooth k-scheme X , there is a canonical

rational commutative dga R0rig,K (X) such that H i (R0rig,K (X)) ∼= H i
rig(X/K ). (The

same holds if we replace the coefficient ring Q by any field L s.t. Q ⊂ L ⊂ K).

(2) Let X as above, and let (X,Y) be a rigid pair. Then there is a commutative dga

R̃0rig(X,Y) together with a diagram of dga quasi-isomorphisms

R0rig,K (X)← R0rig(X,Y)→ R0dR(]X [Y )

functorial in the pair (X,Y).
(3) (Base change) Let ρ : R→ R′ be a finite map of complete discrete valuation rings.

Let k (respectively, k′) be the residue field of R (respectively, R′). Let X be a

k-scheme. Then there is a canonical (both in X and R) quasi-isomorphism

K ′⊗K R0rig,K (X)→ R0rig,K ′(Xk′).
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The latter induces an isomorphism in Deff
A1 (Spec k,Q),

R0rig,K ⊗K K ′→ f∗(R0rig,K ′),

where f : Spec k′→ Spec k is the map induced by ρ and R0rig,? denotes the object

of point (1).

(4) There exists a canonical σ -linear endomorphism of R0rig,K0(X) inducing the

Frobenius on cohomology: it is defined as the composition of

R0rig,K0(X)
Id⊗1
−−−→ R0rig,K0(X)⊗σ K0

b.c.
−−→ R0rig,K0(F

∗X)
rel. Frob.
−−−−−−→ R0rig,K0(X),

(3.3.2.a)

where b.c. stands for the base change morphism of point (3); F is the Frobenius of

Spec k; F∗X is the base change of X via F; and the last map on the right is the

relative Frobenius.

Proof. The details are given in [6, 4.9, 4.21, 4.22]. Since we adopt the language of dagger

spaces there are some formal differences. For the sake of the readers we give the necessary

modifications. To obtain a complex functorial in X , we have to take a colimit on some

filtered category. The category of pairs (X,Y) with X fixed is not filtered. Hence we have

to introduce the following categories. We define the set R PX (respectively, R P(X,Y)) of

diagrams X
f
−→ X ′→ Y ′ (respectively, ( f, F) : (X,Y)→ (X ′,Y ′)morphism of rigid pairs),

where (X ′,Y ′) is a rigid pair. Let R P0
X (respectively, R P0

(X,Y)) be the subset of R PX
(respectively, R P(X,Y)) with f = IdX (respectively, ( f, F) = (Id, Id)).

Now we can form the category SET 0
X (respectively, SET 0

(X,Y)) with objects the

finite subsets of R PX (respectively, R P(X,Y)) having non-empty intersection with R P0
X

(respectively, R P0
(X,Y)); morphisms are inclusions. For instance, an element of SET 0

X is a

finite family of diagrams X
fa
−→ X ′a → Y ′a , a ∈ A (finite set), such that fa0 = Id for some

a0 ∈ A. To such an object we can associate the complex R0dR(]X [Y ′A ), where Y ′A =
∏

a Y ′a .

The categories SET 0
X and SET 0

(X,X̄ ,P)
are filtered.

Having this said, we define

R0rig,K (X) := colim
A∈SET 0

X

R0dR(]X [Y ′A ) R0rig(X,Y) := colim
A∈SET 0

(X,Y)

R0dR(]X [Y ′A ).

Now one can follow word by word the proof of Besser.

Proposition 3.3.3. There exists a motivic ring spectrum Erig,K whose components are all

equal to the complex R0rig,K and whose stability class is induced by dlog such that

Hn
rig(X/K ) ∼= En,i

rig,K (X) := HomDA1 (k,Q)(M(X),Erig,K (i)[n]).

Proof. We have to verify the hypothesis of Proposition 1.4.10 for the family Ei :=

R0rig,K . First, we need to define a morphism of complexes Q[0] → R0rig,K (Gm,k)(1)[1].
We argue as in the de Rham case. Let us denote X = Gm,R . Then the de Rham

cohomology of the dagger space (Xw)K computes the (K -linear) rigid cohomology of

Xk = Gm,k , and there is a canonical map from R0dR((Xw)K ) to R0rig,K (Xk). We can

apply the construction of 3.1.4 to the inclusion �1
(Xw)K /K [−1] ⊂ �1

(Xw)K /K , and we obtain

(as in example 3.2.3) an element dlog of R0dR((Xw)K ) of degree 1.
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Remark 3.3.4. With the notation of point (3) of Proposition 3.3.2, one gets a canonical

base change isomorphism in DMB(k):

Erig,K ⊗K K ′
∼
−−→ f∗(Erig,K ′).

In what follows, we will simply denote by Erig (respectively, R0rig) the ring spectrum

Erig,K0 (respectively, the complex R0rig,K0).

3.4. Absolute rigid cohomology

3.4.1. Along the lines of [5] and [2], we are going to define the analogue of absolute Hodge

theory in the setting of rigid cohomology. Let k be a perfect field of characteristic p. We

denote by F-isoc the category of F-isocrystals (defined over k): i.e., finite-dimensional

K0-vector spaces together with a σ -linear automorphism. This is a tensor category with

unit object 1 given by K0 together with σ . For any I ∈ F-isoc, we denote by I (n) the

F-isocrystal having the same vector space I and Frobenius multiplied by p−n . We would

like to define the absolute rigid cohomology of a k-scheme X as follows:

Hn
φ (X, i) := HomDb(F-isoc)(1, R0(X)(i)[n]),

where R0(X) is a complex of F-isocrystals such that Hn(R0(X)) = Hn
rig(X) together

with its Frobenius endomorphism. Since we do not know how to construct R0 directly, we

follow the strategy of Beilinson in loc.cit. and deduce its existence from Proposition 3.3.2.

Let Cb
rig be the category of bounded complexes of K0-vector spaces M together with

a quasi-isomorphism φ : Mσ
= M ⊗K0,σ K0 → M . We define homotopies (respectively,

quasi-isomorphisms) between objects in Cb
rig to be morphisms in Cb

rig such that they are

homotopies (respectively, quasi-isomorphisms) of the underlying complexes of K0-vector

spaces. Then we can define the category K b
rig to be the category Cb

rig modulo the

null-homotopic morphisms.

Lemma 3.4.2. (1) The category K b
rig is triangulated.

(2) The localization K b
rig[A

−1
] of the category K b

rig by the subcategory A of acyclic

objects exists, and it is a triangulated category too.

(3) Let Db
rig ⊂ K b

rig[A
−1
] be the full subcategory of complexes whose cohomology objects

(w.r.t. the usual t-structure on complexes) are in F-isoc. Then there is a natural

equivalence of categories ι : Db(F-isoc)→ Db
rig.

Proof. We leave it to the reader to check that all the arguments given in [2, § 1,2] (or [13,

§ 2]) can be adapted to our (much simpler) setting. We limit ourselves to making explicit

the formulas for the Hom groups in Db(F-isoc), Db
rig.

Let M, N be two bounded complexes of F-isocrystals. Recall that F-isoc has internal

Hom, so we can form the internal Hom complex Hom•(M, N ) with Frobenius φM,N .

Consider the following morphism of Qp-linear23 complexes:

ξM,N : Hom•(M, N )→ Hom•(M, N ), x 7→ x −φM,N x .

23These are not K0-linear since (in general) the Frobenius is not.
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Then we can prove as in [2, proposition 1.7] that

HomDb(F-isoc)(M, N [i]) ∼= H i−1(Cone ξM,N ). (3.4.2.a)

Similarly, given two complexes M, N in Cb
rig, we define the morphism of complexes

ξ ′M,N : Hom•(M, N )→ Hom•(Mσ , N ), x 7→ x ◦φM −φN ◦ (x ⊗σ 1).

24Then the Hom groups in Db
rig can be computed as follows:

HomDb
rig
(M, N [i]) ∼= H i−1(Cone ξ ′M,N ). (3.4.2.b)

Now it is easy to check that, given two F-isocrystals M, N , we have

ExtiF-isoc(M, N ) ∼= HomDb
rig
(ιM, ιN [i]), (3.4.2.c)

and the faithfulness of ι follows.

Definition 3.4.3. Let X be an algebraic k-scheme. We define the absolute rigid cohomology

as

Hn
φ (X, i) := HomDb

rig
(1, R0rig(X)(i)[n]).

It follows from the equivalence ι of the above lemma that the same formula holds in

Db(F-isoc) for some object R0(X) corresponding to R0rig(X).

Corollary 3.4.4. There is a natural spectral sequence

E pq
2 = Extp

F-isoc(1, Hq(X)(i)) ⇒ H p+q
φ (X, i) (3.4.4.a)

degenerating to the following short exact sequence:

0→ H1
rig(X)/Im(Id−φ/pi )→ Hn,i

φ (X)→ Hn
rig(X)

φ=pi
→ 0.

Proof. The existence of the spectral sequence follows from formula (3.4.2.c). By (3.4.2.b),

it is concentrated in the columns p = 0, 1, so it gives short exact sequences.

Proposition 3.4.5. There exists a motivic ring spectrum Eφ ∈ DMB(k) representing the

absolute rigid cohomology; i.e.,

Hn
φ (X, i) ∼= En,i

φ (X) := HomDMB(k)(M(X),Eφ(i)[n]).

Proof. By point (4) of Proposition 3.3.2, we can define a family of morphism of presheaves

of complexes:

R0rig
φ/pi

−−→ R0rig.

We claim that the latter induces a morphism of ring spectra:

Erig
8
−→ Erig.

24Note that we cannot use Hom, because there is no internal Hom in Cb
rig. This is due to the fact that

the Frobenius is only a quasi-isomorphism.
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Indeed, it is sufficient to notice that (φ⊗ 1) ◦ dlog = p dlog, where dlog : Q(Gm)[−1] →
Erig(1) is the stability class of the rigid spectrum.

Now we can define Eφ to be the homotopy limit of the following diagram of ring spectra:

Erig

8 //
Id
// Erig. (3.4.5.a)

The limit exists by 1.4.8.

To conclude the proof, note that Eφ,i is quasi-isomorphic to the cone Cone(Id−φ/pi )

(up to a shift!). Then it is sufficient to compare (3.4.2.b) and (1.4.10.a).

Remark 3.4.6. According to the preceding proof, one gets a canonical distinguished

triangle of DMB(k):

Eφ → Erig
Id−8
−−−→ Erig

+1
−→, (3.4.6.a)

which induces the short exact sequences of the preceding corollary. In particular, these

exact sequences are functorial with respect to the motive of X .

3.5. Syntomic cohomology

3.5.1. Let X be a smooth R-scheme. With the notation of § 3.2.5, there is a map of

commutative dga

spX : EdR(X K )→ R0dR((X
w)K ) = R0rig(Xk, Xw)

inducing the specialization on cohomology and functorial in X . Details can be found

in [34, §§ 3.3, 5.3].

Now, we can recall the definition of syntomic cohomology Hn
syn(X, i) of X : it is the

cohomology of a complex R0syn(X, i) defined as the homotopy limit of the following

diagram:

R0rig(Xk) R0rig,K (Xk) R0dR(]Xk[Xw ) E ′dR(X K )

R0rig(Xk)

Id
AA

R0rig(Xk)

φ/pi

]] @@

R0rig(Xk, Xw)

bb ;;

EdR(X K )

`` CC

EFdR,i (X K )

^^

(see [6], [13]). To be precise, Besser uses the cone of φ− pi Id instead of Id−φ/pi .

Proposition 3.5.2. Let R be the valuation ring of a p-adic field K . Then there exists a ring

spectrum Esyn in DMB(R,Qp) representing the syntomic cohomology defined by Besser;

i.e., for any smooth R-scheme X and any integer n, there is a canonical isomorphism

Hn
syn(X, i) ∼= En,i

syn(X) := HomDMB(R,Qp)(M(X),Esyn(i)[n]).

In particular, all the results of § 2 apply to syntomic cohomology.

Proof. By construction, the absolute rigid spectrum Eφ maps to Erig, and so to the base

change Erig,K . By the six functor formalism we get the functors

i∗ : DMB(k,Qp)→ DMB(R,Qp), j∗ : DMB(K ,Qp)→ DMB(R,Qp)
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induced by the usual closed (respectively, open) immersion of schemes i : Spec(k)→
Spec(R) (respectively, j : Spec(K )→ Spec(R)). Then we define Esyn as the homotopy

limit (in the category of ring spectra) of the following diagram:

i∗Eφ → i∗Erig,K ← a→ b← c→ d ← j∗EFdR,

where a, b, c, d are the ring spectra induced by Erig(Xk, Xw), R0dR(]Xk[Xw ), EdR(X K ),

E ′dR(X K ), respectively: we leave to the reader the verification that they are ring spectra,

following the same proof as the one of 3.3.3.

To conclude the proof, it is sufficient to note that a homotopy limit of a diagram of

Morel motives is also a Morel motive.

Remark 3.5.3. Given a complete discrete valuation ring R with residue field k and fraction

field K , such that R/W (k) is finite, we get a map of ring spectra in DMB(k):

a0 : Eφ → Erig,K0 → Erig,K0 ⊗K0 K
∼
−→ Erig,K ,

where the last isomorphism comes from Remark 3.3.4. Let us put a = i∗(a0).

Secondly, we get a morphism of ring spectra in DMB(R):

b : j∗EFdR→ j∗EdR
sp
−→ i∗Erig,K .

The first map is the canonical morphism, and the second one is the specialization map

induced by the morphism spX of Paragraph 3.5.1.

Then the syntomic ring spectrum is characterized up to isomorphism by the following

homotopy pullback square (of morphisms of ring spectra):

Esyn

β
��

α // j∗EFdR

b
��

i∗Eφ
a // i∗Erig,K

(3.5.3.a)

In other words, one can define Esyn as the homotopy limit of the lower corner of the

above diagram – but this definition is less precise than the one given in the proof of the

previous proposition as (in this way) Esyn is defined only up to non unique isomorphism.

The fact that the preceding square is a homotopy pullback can be translated into the

existence of a distinguished triangle in DMB(R):

Esyn
α+β
−−→ i∗Eφ ⊕ j∗EFdR

a−b
−−→ i∗Erig,K

+1
−→, (3.5.3.b)

which corresponds to the long exact sequence, for X/R smooth:

. . .→ Hn
syn(X, i)

α∗+β∗
−−−→ Hn

φ (Xk, i)⊕ F i Hn
dR(X K )

a∗−b∗
−−−→ Hn

rig(Xk/K )→ . . . . (3.5.3.c)

Here, α∗ (respectively, β∗) is the usual projection map from syntomic cohomology to

En,i
φ (Xk) = Hn

φ (Xk, i) (respectively, F i Hn
dR(X K )), while a∗ is the canonical map and b∗ is

induced by the specialization map from de Rham cohomology to rigid cohomology.
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Note also that Esyn is the homotopy limit of the diagram of ring spectra

j∗EFdR

b
��

i∗Erig
8 //
Id
// i∗Erig

// i∗Erig,K

so we also obtain the following distinguished triangle:

Esyn→ i∗Erig⊕ j∗EFdR→ i∗Erig⊕ i∗Erig,K
+1
−→,

which precisely induces the long exact sequence originally considered by Besser.

Remark 3.5.4. Syntomic cohomology can be functionally extended to diagrams of

S-schemes, as well as rigid cohomology, absolute rigid cohomology, and filtered de Rham

cohomology. One should note however that the syntomic long exact sequence (3.5.3.b)

can be extended only to the case of diagrams of smooth S-schemes.

3.6. Localizing syntomic cohomology

3.6.1. As the fibred triangulated category DMB satisfies the “gluing formalism” (this

is called the localization property in [12], see § 2.3), we get a canonical distinguished

triangle:

i∗i !(Esyn)
ad ′i
−→ Esyn

ad j
−−→ j∗ j∗(Esyn)

∂i
−→ i∗i !(Esyn)[1] (3.6.1.a)

for i : Spec k → Spec R and j : Spec K → Spec R the natural immersions. The maps ad ′i
and ad j are the obvious adjunction maps, and the map ∂i is the unique morphism which

fits in this distinguished triangle (see [12, 2.3.3]).

Remark 3.6.2. One can be more precise about the gluing formalism. Given any object

M of DMB(R), there exists a unique distinguished triangle of the form

Mk → M → MK
∂
−→ Mk[1]

such that Mk (respectively, MK ) has support in Spec k, i.e., j∗Mk = 0 (respectively, in

Spec K , i.e., i !(MK ) = 0). This means that there exists a canonical isomorphism of that

triangle with the following one:

i∗i !(M)
ad ′i
−→ M

ad j
−−→ j∗ j∗(M)

∂i
−→ i∗i !(M)[1].

3.6.3. Let us introduce yet another spectrum. We consider the map

a0 : Eφ → Erig,K ,

which is defined at the level of the underlying model category, and take its homotopy

fiber Ěφ . In particular, we have a canonical morphism: i∗Erig,K
∂a
−→ i∗Ěφ[1].
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Proposition 3.6.4. Consider the above notation. Then the syntomic spectrum is equivalent

to the homotopy fiber of the morphism

šp : j∗EFdR
b
−→ i∗Erig,K

∂a
−→ i∗Ěφ[1].

Moreover, there are canonical identifications

i !Esyn = Ěφ, j∗Esyn = EFdR,

through which the localization triangle (3.6.1.a) is identified with

i∗Ěφ → Esyn→ j∗EdR
šp
−→ i∗Ěφ[1].

Remark 3.6.5. In fancy terms, the generic fiber of Esyn is the ring spectrum EFdR.

While we cannot compute the special fiber of Esyn, its exceptional special fiber is the

ring spectrum which is “the image of absolute rigid cohomology in rigid cohomology”,

and Esyn is obtained by gluing these two ring spectra.

Proof. By definition of Ěφ , there is a canonical distinguished triangle in DMB(k):

Ěφ
ν0
−→ Eφ

a0
−→ Erig,K

∂a0
−→ Ěφ[1],

which induces the following triangle after applying i∗:

i∗Ěφ
ν
−→ i∗Eφ

a
−→ i∗Erig,K

∂a
−→ i∗Ěφ[1].

Now, according to the fact that the square (3.5.3.a) is a homotopy pullback, one gets a

canonical commutative diagram in DMB(R):

C(α) //

∼ ��

Esyn

β
��

α // j∗EFdR

b
��

// C(α)[1]

∼��
i∗Ěφ

ν // i∗Eφ
a // i∗Erig,K

∂a // i∗Ěφ[1].

In other words, we get a distinguished triangle of the form

i∗Ěφ → Esyn
α
−→ j∗EFdR

šp
−→ i∗Ěφ[1].

Finally, according to the above remark, one gets a canonical isomorphism of triangles:

i∗Ěφ //

∼

��

Esyn

∼

��

α // j∗EFdR

∼

��

šp // i∗Ěφ[1]

∼

��
i∗i !Esyn

adi // Esyn
ad j// j∗ j∗(Esyn)

∂i // i∗i !Esyn[1].
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Remark 3.6.6 (The work of Tamme). The relative cohomology theory H∗rel(X, ∗) of [34] is

represented by the (generalized) cone of the diagram

i∗Erig,K ← a→ b← c→ d ← j∗EFdR,

where we use the notation of the proof of Proposition 3.5.2. This is roughly a cone of a

morphism of ring spectra A→ B; hence it is not a ring spectrum and in particular there

is no unit section.

It follows by the localization sequence that this cohomology theory is represented by

the cone of the canonical adjunction map Esyn→ i∗i !Esyn = i∗Eφ .

Example 3.6.7. Let S = Spec
(
W (k)

)
(for simplicity), and let X be the connected

component of the Néron model of an elliptic curve with multiplicative reduction, i.e.,

X is an S-group scheme such that its generic fiber is an elliptic curve and the special

fiber is isomorphic to Gm . Then X/S is smooth, and we can easily compute the long exact

sequence for syntomic cohomology. For instance, we get

0→ H0
rig(Xs)

a
−→ H0

rig(Xs)⊕ H0
rig(Xs)→ H1,1

syn(X)→

→ H1
rig(Xs)⊕ F1 H1

dR(Xη)
b
−→ H1

rig(Xs)⊕ H1
rig(Xs)→ H2,1

syn(X)→ F1 H2
dR(Xη)→ 0,

where a(x) = (x −φ(x)/p,−x) is injective and b(x, y) = (0, y− x). It follows that Hn,1
syn
∼=

K 2 (as Qp-vector spaces) for n = 1, 2.

The same result can be obtained using the localization triangle. Explicitly, we get the

following exact sequence:

0→H1,1
syn,s(X)→H1,1

syn(X)→F1 H1
dR(Xη)

δ
−→ H2,1

syn,s(X)→H2,1
syn(X)→F1 H2

dR(Xη)→ 0.

Here, H1,1
syn,s(X) stands for Hom(Q(X), i∗i !Esyn(1)[1]). Using Proposition 3.6.4, we get

Hn,1
syn,s(X) = Hn−1

rig (Xs) for n = 1, 2. We also get that δ is the zero map. For a complete

account on the de Rham/rigid cohomology of abelian varieties and their reduction, we

refer to [30].

Example 3.6.8 (Semistable elliptic curve). Let X/S be an elliptic curve such that Xk is a

nodal cubic. We assume that the singular point x0 ∈ Xk is k-rational. The above remark

give a recipe to compute (or approximate) the syntomic cohomology of X ,

En,i
syn(X) := HomDA1 (S,Qp)(M(X),Esyn(i)[n]),

where M(X) = f! f !(QS) and f : X → S is the structural morphism. Let us compute

i∗(M(X)). Given the pullback square

Xk
l //

f0
��

X

f
��

Spec k i // S
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one has a canonical exchange map:

i∗ f! f !(QS) ' f0!l∗ f !(QS)→ f0! f !0i∗(QS) = f0! f !0(Qk) = M(Xk)

(the first iso is due to the base change theorem of the six functors formalism). This map

is an isomorphism in the two following cases:

• f is smooth,

• X is regular and f is quasi-projective (and so in our case).

In the second case, this is due to the absolute purity theorem: as f is quasi-projective,

it can be factored f = pi where p : P → S is smooth and i is a closed immersion, and

then one computes:

f !(QS) = i ! p!(QS) ' i !(QP )(d)[2d] ' QX (d − n)[2(d − n)]

the first iso follows as p is smooth and the second one because i is a closed immersion

between regular schemes. Here, d (respectively, n) is the relative dimension of P/S
(respectively, codimension of i), so d − n is the relative dimension of X/S.

Hence, for X semistable, we have long exact sequences

i !En,i
syn(Xk)→ En,i

syn(X)→ j∗ j∗En,i
syn(X) = F i HdR(Xη)→+.

The term i !En,i
syn(Xk) depends only on the special fiber. In this case it is easy to construct

a proper and smooth hypercover Y∗ of Xk . Let π : X̃k → Xk be the normalization

map. Then we may take Y0 = x0 t X̃k , Y1 = π
−1(x0) and Yi = ∅ for i > 1. Since X̃k is

isomorphic to the projective line, we get that M(Xk) = Q⊕Q[1]⊕Q(1)[2] in DMB(k,Q).
This decomposition allows us to estimate i !En,i

syn(Xk). For instance, we can compute

i !En,i
syn(Xk) = Hn−1

rig (Xk)K ' K for n = 1, 2.

3.7. Syntomic regulator

3.7.1. By using the general definition of § 2.1.3, we get the syntomic (respectively, rigid,

de Rham, etc.) cycle classes. Since all the maps of the homotopy pullback square (3.5.3.a)

are morphisms of monoids in DMB(R), we get the following commutative diagram:

Hn
syn(X,m)

α∗ //

β∗

��

Fm Hn
dR(X K )

sp

��

Hn,m
B (X)

σφ i∗

xx
(a)

(b)

σsyn

ff
σFdR j∗

88

σrigi∗

&&
Hn
φ (Xk,m) // Hn

rig(Xk/K )

where σ? stands for the higher cycle classes relevant to the corresponding cohomology, and

i∗ (respectively, j∗) denotes the pullback in motivic cohomology by i (respectively, j).
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(1) Part (a) of the above commutative diagram simply express the fact that, for any

smooth k-scheme X0, the higher cycle class map

σrig : Hn,m
B (X0)→ Hn

rig(X/K0)

lands into the part φ = pm of rigid cohomology and that it admits a canonical

lifting to the absolute rigid cohomology Hn,m
φ (X) through the canonical surjection

Hn,m
φ (X)→ Hn

rig(X/K0)
φ=pm

of Corollary 3.4.4.

(2) One can deduce from the commutativity of part (b) of the above diagram another

proof of the fact, already obtained in [13], that the specialization map sp is

compatible with the specialization map spCH in Chow theory as defined in [19,

§ 20.3]. Indeed, when n = 2m, part (b) can be rewritten as follows:

CHm(X K )
σFdR //

spCH

��

F2m Hm
dR(X K )

sp

��

CHm(X)

i∗ **

j∗ 44

CHm(Xk)
σrig // Hm

rig(Xk/K )

and the assertion follows as j∗ is surjective and spCH is the unique morphism making

the left-hand side commutative.

(3) (Concerning the terminology) The term “higher cycle classes” comes from the

theory of higher Chow groups, which, for smooth R-schemes, coincide rationally

with Beilinson motivic cohomology according to [29, 14.7].

The term “syntomic regulator” was introduced by Gros in [22]. It comes from the

intuition that syntomic cohomology is an analogue of Deligne cohomology and that

one can transport the setting of Beilinson’s conjectures from Deligne cohomology

to syntomic cohomology. One should be careful however that, in the case of Deligne
cohomology, and if (2m− n) = 1, then the higher cycle class map is only a part of

the regulator (see [33, § 3.3]).

Remark 3.7.2. The syntomic Chern classes are constructed as in § 2.1.4. These are

determined by the first Chern class c1 of the canonical line bundle of P1
R . According

to our construction of the syntomic ring spectrum, this is nothing else than the class

dlog. One deduces that the Chern classes obtained here in syntomic cohomology coincide

with the one previously constructed by Besser in [6].

Proposition 3.7.3. Let f : Y → X be a projective morphism between smooth R-schemes,

and denote by fk (respectively, fK ) its special (respectively, generic) fiber. Then the
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following diagram is commutative:

Hn
syn(Y, i)

α∗+β∗ //

f∗
��

Hn
φ (Yk , i)⊕ F i Hn

dR(YK )
a∗−b∗ //

fk∗+ fK∗
��

Hn
rig(Yk/K ) //

fk∗
��

Hn+1
syn (Y, i)

f∗
��

Hn−2d
syn (X, i − d)

α∗+β∗

// Hn−2d
φ (Xk , i − d)⊕ F i−d Hn−2d

dR (X K )a∗−b∗
// Hn−2d

rig (Xk/K ) // Hn−2d+1
syn (X, i − d)

where the lines are given by the exact sequences (3.5.3.c).

Proof. Applying the same formalism to the motivic ring spectra EFdR, Erig,K , Eφ ,

one obtains Gysin morphisms on their cohomology, satisfying the preceding properties.

Moreover, using the distinguished triangle (3.5.3.b) of DMB(R), one gets the result.

3.7.4. Recall that in § 2.2.1 we have associated four theories (cohomology, homology,

coho. with compact support, BM homology) to any motivic ring spectrum.

(1) We get syntomic theories and the higher cycle class (2.1.3.a) also for singular

R-schemes.25

When focusing attention on Chow theory, one gets, in particular, the following.

• X regular: σsyn : CHn(X)→ H2n
syn(X, n).

• X regular quasi-projective: σsyn : CHn(X)→ H syn,BM
2n (X, n).

The second point follows from the fact that Hn,i
B (X) ' HB,BM

2d−n,d−i (X), where d is

the (Krull) dimension of X according to the motivic absolute purity theorem [12,

14.4.1].

(2) When the base scheme is S = Spec k, we get rigid (respectively, absolute rigid)

theories associated with Esyn,K (respectively, Eφ) and regulators for these theories.

When K = K0, the Frobenius operator 8 of Erig induces an action of Frobenius

on all four theories, compatible with the regulator. Moreover, the distinguished

triangle (3.4.6.a) yields long exact sequences in all four theories.

(3) When S = Spec K , we get the de Rham theory (respectively, filtered de Rham)

associated with EdR (respectively, EFdR) equipped with regulators. The canonical

map EFdR→ EdR induces natural maps of these theories, compatible with

regulators.
Consider the specialization map

sp : j∗EFdR→ i∗Erig,K .

Given any R-scheme X with structural morphism f , and applying f∗ f ! to this map,

one obtains

sp∗ : HFdR,BM
n (X K , i)→ H rig,K ,BM

n (Xk, i),

using the exchange isomorphisms f !i∗ = i ′∗ f !k and f ! j∗ = j ′∗ f !K . Similarly, if we

apply f∗ f ! to the distinguished triangle (3.5.3.b), one gets the following long exact

25Recall that, for singular schemes, Beilinson motivic cohomology is defined after [12] and [9] as the
graded part of homotopy invariant K -theory for the γ -filtration.
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sequence:

. . .→ H syn,BM
n (X, i)

α∗+β∗
−−−→ Hφ,BM

n (Xk, i)⊕ HFdR,BM
n (X K , i)

a∗−sp∗
−−−−→ H rig,K ,BM

n (Xk, i)→ . . . . (3.7.4.a)

3.7.5. All the theories considered in the previous paragraph satisfy the functorialities

described in § 2.2.2. Moreover, regulators are compatible with these functorialities.

Similarly, the maps sp∗, α∗, β∗, a∗, and b∗ considered in part (3) of this example are

natural with respect to proper covariant and smooth contravariant functorialities.

Moreover, taking care of the functoriality explained in the previous remark for motivic

BM-homology, one can check that the following diagram is commutative:

HB
n,i (X K /K )

σFdR // HFdR,BM
n (X K , i)

sp∗

��

HB
n,i (X/R)

i∗ **

j∗ 44

HB
n,i (Xk/k)

σrig // H rig,K ,BM
n (Xk, i).

When X/R is quasi-projective regular with good reduction and i = 2n, one obtains in

particular a generalization of the second part of Remark 3.7.1 (applying the motivic

absolute purity theorem [12, 14.4.1], all the motivic BM-homology in the above diagram

can be identified with Chow groups in that case).

This fact can be extended to the exact sequence (3.7.4.a) and to its compatibility with

the regulator in syntomic BM-homology.

3.8. Rigid syntomic modules

3.8.1. The aim of this last section is to apply the theory developed in [12, § 7.2] to the

syntomic ring spectrum Esyn.

Put S = Spec R. Recall that, by construction, Esyn can be seen as an object of

Spring(S,Q) (Paragraph 1.4.6).

Let f : X → S be any morphism of schemes. The pullback functor f ∗ on the category

of Tate spectra is monoidal. Thus, it obviously induces a functor:

f ∗ : Spring(S,Q)→ Spring(X,Q).
In particular, we can define the rigid syntomic ring spectrum over X as follows:

Esyn,X := f ∗(Esyn).

The collection of these ring spectra defines a cartesian section of the fibered category

Spring(−,Q) over the category of R-schemes. In particular, one can apply [12, Proposition

7.2.11] to it. In particular, the category of modules over Esyn,X in Sp(X,Q) admits a model

structure.

Definition 3.8.2. Consider the above notation.

We define the category Esyn-modX of rigid syntomic modules over X as the homotopy

category of the model category of modules over the ring spectrum Esyn,X .
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3.8.3. According to [12], Propositions 7.2.13 and 7.2.18, rigid syntomic modules inherit

the good functoriality properties of the stable homotopy category (in the terminology

of [12, Definition 2.4.45], the category Esyn-mod, fibered over the category of R-schemes,

is motivic). Let us recall briefly the six functors formalisms. Given a morphism f : T → S
of R-schemes, one has two pairs of adjoint functors:

f ∗ : Esyn-modS � Esyn-modT : f∗,

f! : Esyn-modT � Esyn-modS : f!, for f separated of finite type,

and Esyn-modX is triangulated closed monoidal. We denote by ⊗ (respectively, Hom) the

tensor product (respectively, internal Hom).

• f∗ = f! for f proper.

• Relative purity: f ! = f ∗(d)[2d] for f smooth of constant relative dimension d.

• Base change formulas: f ∗g! = g′
!

f ′∗, for f any morphism (respectively, g any separated

morphism of finite type), f ′ (respectively, g′) the base change of f along g (respectively,

g along f ).

• Projection formulas: f !(M ⊗ f ∗(N )) = f!(M)⊗ N .

• Localization property: given any closed immersion i : Z → S of R-schemes, with

complementary open immersion j , there exists a distinguished triangle of natural

transformations as follows:

j! j !→ 1→ i∗i∗
∂i
−−→ j! j ![1],

where the first (respectively, second) map denotes the counit (respectively, unit) of the

relevant adjunction (as in Paragraph 3.6.1).

Remark 3.8.4. An important set of properties is missing in the theory of rigid syntomic

modules.

One will say that a syntomic module over X is constructible if and only if it is compact

in the triangulated category Esyn-modX . The category of constructible modules should

enjoy the following properties.

(1) They are stable by the six operations (when restricted to excellent R-schemes).

(2) They satisfy Grothendieck duality (existence of a dualizing module).

To get these properties, one has only to prove the absolute purity for syntomic modules.

Given any closed immersion i : Z → X of regular R-schemes, of pure codimension c, there

exists an isomorphism:

i !(1X ) = 1Z (c)[2c].

3.8.5. Syntomic triangulated realization. Applying again [12], Proposition 7.2.13, one gets

for any R-scheme X an adjunction of triangulated categories,

Lsyn
X : DMB(X)� Esyn-modX : O

syn
X ,

such that the following hold.
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(1) Osyn
X is conservative.

(2) For any Beilinson motive M over X , one has an isomorphism

OsynLsyn(M) ' M ⊗Esyn

functorial in M .

(3) The functor Lsyn
X commutes with the operations f ∗, f!, ⊗.

Let us denote by 1X the unit object of Esyn-modX . According to point (2), one obtains

a canonical isomorphism,

HomEsyn-modX

(
1X ,1X (i)[n]

)
' En,i

syn(X),

which is functorial in X and compatible with products.

Remark 3.8.6. In the preceding section, we derived Bloch–Ogus axioms, for syntomic

cohomology and syntomic BM-homology, from the functoriality of DMB. In fact, as

in [8, Example 2.1], one can also obtain these axioms from the properties of syntomic

modules stated above.

3.8.7. Descent properties. According to [12, § 3.1], the 2-functor X 7→ Esyn-modX can be

extended to diagrams of R-schemes (as well as the syntomic triangulated realization).

Moreover, the pair of functors ( f ∗, f∗) can be defined when f is a morphism of diagrams

of R-schemes.

From [12, 7.2.18], the motivic category Esyn-mod is separated. Therefore, according

to [12, 3.3.37], it satisfies h-descent (see Paragraph 2.2.11 for the h-topology): for any

h-hypercover p : X → X of R-schemes, the functor

p∗ : Esyn-modX → Esyn-modX

is fully faithful.

Recall also the following more concrete version of descent. Given any pseudo-Galois

cover26 f : Y → X of group G, any syntomic module M over X , the canonical morphism

M → ( f∗ f ∗(M))G

is an isomorphism, where we have denoted by ?G the fixed point for the obvious action

of G.
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3. Alexander Bĕılinson, Higher regulators and values of L-functions, Current problems in
mathematics, Volume 24, pp. 181–238 (Itogi Nauki i Tekhniki, Akad Nauk SSSR Vsesoyuz
Inst Nauchn i Tekhn Inform, Moscow, 1984) MR 760999 (86h:11103).
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