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We construct the (filtered) Ogus realisation of Voevodsky 
motives over a number field K. This realisation extends the 
functor defined on 1-motives by Andreatta, Barbieri-Viale and 
Bertapelle. As an illustration we note that the analogue of the 
Tate conjecture holds for K3 surfaces.
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1. Introduction

Let K be a number field, and GK its absolute Galois group. For X a K-scheme, let 
Hi

�(X) = Hi
ét(XK , Q�) be the �-adic cohomology of X. If X is projective and smooth 

over K, the Tate conjecture for divisors predicts that the �-adic cycle class map

c1,� : Pic(X) ⊗Q� → H2
� (X)(1)GK = HomQ�[GK ](Q�, H

2
� (X)(1))
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is surjective. This conjecture is known for abelian varieties thanks to Faltings [17], and 
is equivalent to the fact that

Hom(A,B) ⊗Q�
∼→ HomQ�[GK ](V�(A), V�(B))

for abelian varieties A, B over K, where V�(−) denotes the rational Tate module. The 
Tate conjecture is also known for K3 surfaces by reduction to the case of abelian varieties 
via the Kuga–Satake construction [23, Theorem 5.6(a)] (see also [1], [8]).

Recently Andreatta–Barbieri-Viale–Bertapelle [3] have defined the filtered Ogus real-
isation for 1-motives over K

TFOg : M1,Q → FOg(K)

where FOg(K) is the filtered Ogus category over K (see §2 for the definition) and 
M1,Q is the category of 1-motives up to isogeny (also called 1-isomotives). Moreover 
they proved that TFOg is fully faithful. In particular for abelian varieties we have

Hom(A,B) ⊗Q ∼= HomFOg(K)(TFOg(A), TFOg(B)) .

The aim of this paper is to define a cohomology theory for K-varieties with values in 
FOg(K) compatible with TFOg. More precisely let DMgm(K) be Voevodsky’s category 
of geometric motives over K. Then we prove the following.

Theorem 1.1. There exists a (homological) realisation functor

RFOg : DMgm(K) → Db(FOg(K))

compatible with TFOg.

We use the approach of Déglise–Nizioł [14, Proposition 4.10] to obtain the realisation. 
This in turn is based upon Nori’s construction [18] of an abelian category of mixed 
motives. For a precise statement of the compatibility with TFOg see §5.

As an illustration we can obtain a FOg version of the Tate conjecture for K3 surfaces 
over a number field. In fact the compatibility of de Rham and crystalline cycle class 
maps [9, Corollary 3.7] gives rise to a homomorphism

c1,FOg : Pic(X) ⊗Q → HomFOg(K)(K,H2
FOg(X)(1))

and by using the full-faithfulness of [3] in place of Faltings’ theorem, we can similarly 
use the Kuga–Satake construction to show that the latter is surjective (hence an isomor-
phism) when X is a K3 surface over K.
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1.1. Notations and conventions

Throughout this article, K will denote a number field. A place of K will always mean 
a finite place (we will never need to consider real or complex places). For every such 
place v of K, let Kv denote the completion, Ov the ring of integers, kv the residue field, 
pv its characteristic, and qv = pnv

v its order. For all v which are unramified over Q, let 
σv denote the lift to Kv of the absolute Frobenius of kv. Following [18], a variety over a 
field will be a reduced scheme, separated and quasi-projective over k; VarK will denote 
the category of varieties over K, SmK the category of smooth varieties, and Smaff

K the 
category of smooth affine varieties.

2. The (filtered) Ogus category

We introduce the (filtered) Ogus category, following [3]. Let P be a cofinite set of 
absolutely unramified places of K. We define CP to be the category whose objects are 
systems M = (MdR, (Mv, φv, εv)v∈P ) such that:

(1) MdR is a finite dimensional K-vector space;
(2) (Mv, φv) is a F -Kv-isocrystal, that is, Mv is equipped with a σv-linear automor-

phism φv;
(3) ε = (εv)v∈P is a system of Kv-linear isomorphisms

εv : MdR ⊗Kv → Mv .

A morphism f : M → M ′ is then a collection (fdR, (fv)v∈P ) where:

(1) fdR : MdR → M ′
dR is a K-linear map;

(2) fv : Mv → M ′
v is Kv-linear morphism compatible with Frobenius and such that 

ε−1
v ◦ fv ◦ εv = fdR ⊗Kv.

Note that by the second criterion, to specify a morphism it is enough to specify fdR. 
There are obvious ‘forgetful’ functors CP → CP ′ whenever P ′ ⊂ P and we can form the 
Ogus category Og(K) as the 2-colimit

Og(K) = 2 colim CP

P
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where P varies over all cofinite sets of unramified places of K. For an object M ∈ Og(K)
and n ∈ Z we denote by M(n) the Tate twist of M , that is where each Frobenius φv is 
multiplied by p−n

v .

Definition 2.1. A weight filtration on an object M = (MdR, (Mv, φv, εv)v∈P ) ∈ CP is an 
increasing filtration W•M by subobjects in CP such that for all v ∈ P the graded pieces 
GrWi Mv are pure of weight i. That is, all eigenvalues of the linear map φnv

v are Weil 
numbers of qv-weight i (i.e. all their conjugates have absolute value qi/2v [10]). Again, 
to give a weight filtration on M it suffices to give a filtration on MdR which induces a 
weight filtration on all Mv.

We can therefore consider the filtered Ogus category FOg(K) whose objects are ob-
jects of Og(K) equipped with a weight filtration, and morphisms are required to be 
compatible with this filtration.

Lemma 2.2 ([3], Lemma 1.3.2). The filtered Ogus category FOg(K) is a Q-linear abelian 
category, and the forgetful functor

FOg(K) → Og(K)

is fully faithful.

2.1. The basic construction

Let X be a smooth variety over K. By Nagata plus Hironaka we can find a normal 
crossings compactification X ⊂ X, with D := X \X. Then we can consider the following 
cohomology groups

(1) (de Rham) There is an isomorphism

Hi
dR(X/K) ∼= Hi

log -dR((X,D)/K) := Hi
dR(X,ΩX/K〈D〉),

where ΩX/K〈D〉 is the complex of algebraic differential forms on X with logarithmic 
poles along D. This is a finite dimensional K-vector space endowed with an increasing 
(weight) filtration W•, and a decreasing (Hodge) filtration F • [19, p. 25].

(2) (Rigid) There is a sufficiently divisible integer n such that the pair (X, D) has a 
model (X , D) over Spec(OK [1/n]) such that X/OK [1/n] is proper and smooth, and 
D ⊂ X a divisor with relative normal crossings.1
For any place v of K not dividing n, we can consider the rigid cohomology 
Hi

rig(Xkv
/Kv) of the reduction modulo v of X , i.e. Xkv

:= X ⊗ kv. Assuming that 

1 In fact we can even suppose that the discriminant of K divides n.
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v is not ramified in K, we can endow Hi
rig(Xkv

/Kv) with a semilinear Frobenius 
endomorphism φv. It turns out that Hi

rig(Xkv
/Kv) is an F -isocrystal of mixed inte-

gral weights: all the eigenvalues of the linearised Frobenius φnv
v are Weil numbers of 

integral weight (relative to kv) [10].
(3) (Comparison) In the above setting the Berthelot (co-)specialisation map

Hi
dR(X/K) ⊗K Kv → Hi

rig(Xkv
/Kv)

is an isomorphism and it is functorial. By a result of Chiarellotto and Le Stum [11]
we may identify (under the aforementioned isomorphism)

grWs Hi
dR(X/K) ⊗Kv = Hi

rig(Xkv
/Kv)wt=s

where the latter is the sum of the all the generalised eigenspaces for φnv
v associated 

to eigenvalues which are Weil numbers of qv-weight s.

3. Realisation à la Nori

A very general method for constructing realisations was given by Nori, and this was 
used to construct the derived syntomic realisation for varieties over p-adic fields in [14]. 
For us, the basic point will be to construct appropriate FOg-valued relative cohomology 
groups of a closed immersion Y ↪→ X of K-varieties; an appeal to Nori’s basic lemma 
then allows the construction of FOg-valued cohomology complexes which give rise to 
the required derived realisations. In order to construct the FOg-structure on the relative 
cohomology Hi(X, Y ) we can follow [22, Part II, §5.5] and use descent to deduce the 
existence of a Frobenius compatible with the de Rham weight filtration.

3.1. Nori category

The basic reference here is the exposition in [18, Ch. II] of Nori’s original construction. 
Let K be a field of characteristic 0, and of cardinality ≤ card(C). We say that a system 
(X, Y, n) is a good pair if:

• X is a K-variety;
• Y ⊂ X is a closed sub-variety;
• for one (equivalently: for any) embedding K ↪→ C the relative cohomology groups

Hi
B(X(C), Y (C),Q)

vanish for i �= n.

Nori then considers a directed graph Δeff
g whose vertices are exactly the set of good pairs 

over K, and which has the following two kinds of edges:
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(1) (functoriality) f∗ : (X ′, Y ′, n) → (X, Y, n) for any commutative square

X
f

X ′

Y
f|Y

Y ′

where (X, Y, n), (X ′, Y ′, n) are good pairs.
(2) (coboundary) ∂ : (Y, Z, n − 1) → (X, Y, n) if Z ⊂ Y ⊂ X.

By definition, Δg is the directed graph obtained after localising Δeff
g with respect to 

(Gm, {1}, 1). The relative cohomology groups give a representation

H∗ : Δg → ModQ (resp. H∗ : Δeff
g → ModQ)

and the category of (cohomological) Nori motives CNMK (resp. effective Nori motives 
CNMeff

K ) is the universal abelian category through which H∗ factors.

3.2. The representability theorem of Déglise–Nizioł

Here we briefly sketch a general method of Déglise and Nizioł for constructing re-
alisations, for more details the reader should consult [14, §4]. Let A be a Tannakian 
K-linear category with a fibre functor ω : A → VecC to the category of C-vector 
spaces. If there is representation A : Δg → A (i.e. a covariant functor) such that 
ω(A(X, Y, n)) ∼= Hn(X(C), Y (C), C), then there exists a motivic realisation (monoidal, 
covariant) functor

R : DMgm(K) → Db(A )

such that H−n(RM(X, Y )) = A(X, Y, n)∨ for any good pair (X, Y, n) (see [14, Proposi-
tion 4.10]).2 Here we denote by M(X, Y ) the relative (homological) motive of the pair 
(X, Y ), characterised by the existence of an exact triangle

M(Y ) → M(X) → M(X,Y ) +1−→

in DMgm(K).

Remark 3.1. We note that the proof only uses affine schemes. So it is enough to work 
with affine good pairs. In fact, thanks to Beilinson [7], any affine variety X has a cellular 
stratification

2 Mind that there is a misprint in [14] relative to the cohomological degree of LHS. They write n instead 
of −n.
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F•X : ∅ = F−1X ⊂ · · · ⊂ FdX = X

such that: (FiX, Fi−1X, i) is a good pair; the complement FiX\Fi−1X is smooth over K; 
either FiX (resp. Fi−1X) is of dimension i (resp. i −1), or FiX = Fi−1X is of dimension 
< i. Moreover, the set of cellular stratifications of a given X form a filtered system, 
functorial in X. Thus for any affine scheme X we can define the complex

R′(X) := colim
F•

(A(F0X, 0) → A(F1X,F0X, 1) → · · · → A(FiX,Fi−1X, i) · · · )

which gives a functor R′ :
(
Smaff

K

)◦
→ Cb(Ind-A ), which is enough to construct R.

4. Construction of FOg-valued cohomology

In this section we will perform the key step in constructing the filtered Ogus realisa-
tion, by showing that relative de Rham cohomology groups Hi

dR(X, Y/K) of K-varieties 
can be canonically enriched to the filtered Ogus category (Theorem 4.5). For smooth 
varieties, this follows from work of Chiarellotto and Le Stum [11], and in general we use 
cohomological descent just as Peters and Steenbrink do in the mixed Hodge case in [22, 
Part II, §5.5].

4.1. Cohomology of varieties with values in FOg

First, we will consider the case of a single variety X/K, and use cohomological descent 
to enrich the de Rham cohomology groups of X to the filtered Ogus category.

Definition 4.1.

(1) A SNCD pair over K will be a pair (X, D) consisting of a smooth and proper 
K-variety together with a simple normal crossings divisor D ⊂ X. A morphism 
(Y , E) → (X, D) of SNCD pairs is a morphism of varieties f : Y → X such that 
f−1(D) ⊂ E, and the category of these objects will be denoted SNCK .

(2) An SNCD resolution of a K-variety X will be a simplicial SNCD pair (X•, D•) ∈
SNCΔop

K , together with an augmentation π• : X• := X• \D• → X which makes X•
a proper hypercover of X.

(3) For a SNCD pair (X, D) we denote

Hi
log -dR((X,D)/K) := Hi(X,ΩX/K〈D〉)

its logarithmic de Rham cohomology groups. Similarly for a simplicial SNCD pair.

Let (X≤n

• , D≤n
• ) be an n-truncated SNCD pair over K. Then there exists a finite set 

of absolutely unramified primes S ⊂ |K| such that this n-truncated SNCD pair extends 
to an ‘n-truncated SNCD pair’
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(X≤n

• ,D≤n
• )

over the ring OK,S of S-integers. In other words, X≤n

• → Spec (OK,S) is a smooth 

and proper n-truncated simplicial scheme, and D≤n
• ⊂ X≤n

• is a relative simple normal 
crossings divisor. We write X≤n

• := X≤n

• \D≤n
• . For any v /∈ S we therefore obtain by [5, 

Corollary 2.6] an isomorphism

Hi
log -dR((X≤n

• , D≤n
• )/K) ⊗K Kv

∼= Hi
rig(X≤n

•,kv
/Kv)

via which we can put a semilinear Frobenius endomorphism ϕv on

Hi
log -dR((X≤n

• , D≤n
• )/K) ⊗K Kv.

Since any two choices of model become isomorphic after possibly increasing S, we there-
fore obtain well-defined cohomology groups

Hi
Og(X≤n

• , D≤n
• ) ∈ Og(K)

which are functorial in (X≤n

• , D≤n
• ).

To show that these groups actually lie in the full sub-category FOg(K) ⊂ Og(K), 
we need to produce a weight filtration. We consider the increasing weight filtration 
W•ΩX

≤n
•

〈D≤n
• 〉 on the logarithmic de Rham complex of (X≤n

• , D≤n
• ), that is the filtration 

coming from the number of log poles.
For each fixed m ≤ n, we let Jm denote the set of irreducible components of Dm; for 

any I ⊂ Jm we write Dm,I for the intersection of all elements of I, and |I| for the size 
of I. We let aI : Dm,I → Xm denote the natural closed immersion. Thus for any fixed 
m we have by [15, (3.1.5.2)] that

grWp ΩXm
〈Dm〉 ∼=

⊕
I⊂Jm,|I|=p

aI∗ΩDm,I
[−p].

We therefore obtain a spectral sequence

Ep,q
1 =

⊕
i+j=p

⊕
|Ij |=−i

Hq+2i
dR (Dj,Ij/K) ⇒ Hp+q

log -dR((X≤n

• , D≤n
• )/K) (�)

inducing a filtration W• on Hp+q
log -dR((X≤n

• , D≤n
• )/K).

Proposition 4.2. Let (X≤n

• , D≤n
• ) be an n-truncated simplicial SNCD pair over K. Then 

the filtration W• constructed above is a weight filtration, and exhibits Hi
Og(X≤n

• , D≤n
• )

as an object of the full subcategory FOg(K) ⊂ Og(K).
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Proof. Let (X≤n

• , D≤n
• ) be a spreading out of (X≤n

• , D≤n
• ) over some OK,S as above, and 

set X≤n
• := X≤n

• \D≤n
• . Then using exactly the same method as in [11] we can construct 

a similar spectral sequence

Ep,q
1 =

⊕
i+j=p

⊕
|Ij |=−i

Hq+2i
rig (D≤n

j,Ij ,kv
/Kv) ⇒ Hp+q

rig (X≤n
•,kv

/Kv) (�kv
)

abutting to the rigid cohomology of Xkv,•. Moreover, it again follows exactly as in [11] that 
these two spectral sequences become isomorphic after tensoring (�) with Kv. Now, the 
spectral sequence (�kv

) is not compatible with Frobenius, however, it is so after making 
suitable Tate twists (essentially coming from the Gysin isomorphism). We therefore 
obtain a Frobenius compatible spectral sequence

Ep,q
1 =

⊕
i+j=p

⊕
|Ij |=−i

Hq+2i
rig (D≤n

j,Ij ,kv
/Kv)(i) ⇒ Hp+q

rig (X≤n
•,kv

/Kv),

and we now observe that each Ep,q
1 term is pure of weight q. Thus the induced filtration 

on

Hp+q
rig (X≤n

•,kv
/Kv) ∼= Hp+q

log -dR((X≤n

• , D≤n
• )/K) ⊗Kv

is indeed a weight filtration for the action of Frobenius, as required. �
To get the analogous result arbitrary K-varieties we appeal to Nagata compactification 

and Hironaka’s embedded resolution of singularities, which together imply that every 
K-variety X admits an SNCD resolution. Moreover, by [16, (5.3.5) II] we know that if

(X•, D•), π• : X• → X

is such an SNCD resolution, and i < n − 1 then there are isomorphisms

Hi
dR(X/K) ∼→ Hi

dR(X≤n
• /K) ∼← Hi

log -dR((X≤n

• , D≤n
• )/K).

By Proposition 4.2 we have a canonical enrichment of Hi
log -dR((X≤n

• , D≤n
• )/K) to 

FOg(K), which we can transport to Hi
dR(X/K) via this isomorphism. To check that 

this structure doesn’t depend on the choice of SNCD resolution, we argue along com-
pletely standard lines. That is, any two SNCD resolutions can be dominated by a third, 
and the pull-back maps induce isomorphisms on cohomology (for more details see [16, 
§8.2]). We have therefore proved the following.

Corollary 4.3. There is a canonical enrichment of the functor

Hi
dR(−/K) : VaropK −→ VecK
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to a functor

Hi
FOg(−) : VaropK −→ FOg(K)

taking values in the filtered Ogus category.

4.2. Cohomology of pairs with values in FOg

Next we will deal with the relative cohomology of pairs. Suppose therefore that we 
are given a morphism

f≤n
• : (Y ≤n

• , E≤n
• ) → (X≤n

• , D≤n
• )

of n-truncated simplicial SNCD pairs over K. As before we can spread out to obtain

f≤n
• : (Y≤n

• , E≤n
• ) → (X≤n

• ,D≤n
• )

over some ring of integers OK,S, set X≤n
• = X≤n

• \ D≤n
• and Y≤n

• = Y≤n

• \ E≤n
• . For 

v /∈ S, the resulting comparison theorem

Hi
log -dR((X≤n

• , D≤n
• ), (Y ≤n

• , E≤n
• )/K) ⊗Kv

∼= Hi
rig(X≤n

•,kv
,Y≤n

•,kv
/K)

endows the LHS with a Frobenius structure, and thus gives rise to Og(K)-valued coho-
mology groups Hi

Og((X≤n

• , D•), (Y
≤n

• , E•)). As for de Rham, the relative rigid cohomol-
ogy is defined via mapping cone. To obtain a filtration we use [22, Part I, Theorem 3.22]
on the mapping cone of

Ω
X

≤n
•

〈D≤n
• 〉 → f≤n

•∗ Ω
Y

≤n
•

〈E≤n
• 〉

and We obtain a filtration W• on the cohomology groups

Hi
log -dR((X≤n

• , D•), (Y
≤n

• , E≤n
• )/K).

Proposition 4.4. Let f≤n
• : (Y ≤n

• , E≤n
• ) → (X≤n

• , D≤n
• ) be a morphism of n-truncated 

simplicial SNCD pairs over K. Then the filtration W• constructed above on
Hi

log -dR((X≤n

• , D≤n
• ), (Y ≤n

• , E≤n
• )/K) is indeed a weight filtration, and thus the coho-

mology groups Hi
Og((X≤n

• , D≤n
• ), (Y ≤n

• , E≤n
• )/K) lie in FOg(K) ⊂ Og(K).

Proof. We have a long exact sequence

. . . → Hi
log -dR((X≤n

• , D≤n
• ),(Y ≤n

• , E≤n
• )/K) → Hi

log -dR((X≤n

• , D≤n
• )/K)

→ Hi
log -dR((Y ≤n

• , E≤n
• )/K) → . . .
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which is the de Rham part of a long exact sequence in Og(K). Moreover the groups 
Hi

log -dR((X≤n

• , D≤n
• )/K) and Hi

log -dR((Y ≤n

• , E≤n
• )/K) underlie objects in FOg(K). By 

mixed Hodge theory the above long exact sequence is strictly exact with respect to the 
filtrations W•. If we therefore let keri denote the kernel of

Hi
log -dR((X≤n

• , D≤n
• )/K) → Hi

log -dR((Y ≤n

• , E≤n
• )/K)

and cokeri−1 the cokernel of

Hi−1
log -dR((X≤n

• , D≤n
• )/K) → Hi−1

log -dR((Y ≤n

• , E≤n
• )/K),

then the filtrations on Hi
log -dR((X≤n

• , D≤n
• )/K) and Hi−1

log -dR((Y ≤n

• , E≤n
• )/K) induce 

weight filtrations on keri and cokeri−1 respectively, exhibiting them as objects of 
FOg(K). Thus for almost all unramified places v of K, and for all integers k, we have 
an short exact sequence

0 → Wkcokeri−1 → WkH
i
log -dR((X≤n

• , D≤n
• ), (Y ≤n

• , E≤n
• )/K) → Wk keri → 0

of Kv-vector spaces. In particular, all Frobenius eigenvalues on the kth piece
WkH

i
log -dR((X≤n

• , D≤n
• ), (Y ≤n

• , E≤n
• )/K) ⊗ Kv are Weil numbers of weight ≤ k, and 

thus W• is indeed a weight filtration on Hi
log -dR((X≤n

• , D≤n
• ), (Y ≤n

• , E≤n
• )/K). �

Now if we are given a morphism f : Y → X of K-varieties, then we can always 
extend f to a morphism of SNCD resolutions (Y •, E•) → (X•, D•). Now arguing along 
essentially the same lines as in Proposition 4.3 we can show that the isomorphism

Hi
dR(X,Y/K) ∼= Hi

log -dR((X≤n

• , D≤n
• ), (Y ≤n

• , E≤n
• )/K)

for i < n − 1 allows us to view the former canonically as an object in FOg(K). If we let 
MorK denote the category of pairs of varieties over K, with morphisms just commutative 
diagrams, we therefore get the following result.

Theorem 4.5. There is a canonical lifting

Hi
FOg(−,−) : MorK → FOg(K)

of algebraic de Rham cohomology

Hi
dR(−,−) : MorK → VecK

such that for any triple

Z → Y → X
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the long exact sequence in relative de Rham cohomology induces a long exact sequence

. . . → Hi
FOg(X,Y ) → Hi

FOg(X,Z) → Hi
FOg(Y,Z) → . . .

in FOg(K). In particular there is a realisation H∗
FOg : CNMeff → FOg(K).

Thus following the general method of [14, §4] outlined above we can construct a 
(covariant) realisation functor

RFOg : DMgm(K) → Db(FOg(K))

such that H−n(RFOgM(X)) ∼= Hn
FOg(X)∨ for all K-varieties X.

5. Compatibility with the realisation for 1-motives

In this section we want to compare the Ogus realisation of 1-motives [3] with that for 
Nori motives. We follow [4, §6.2], but we will use a cohomological convention.

Let S be a Noetherian scheme and π : X → S a projective smooth scheme whose 
geometric fibres are connected curves of the same genus. The only cases we will use are 
S = Spec (R) for R = K, Kv, Ov, kv. Then the fppf sheaf R1π∗Gm,X is represented by 
a group scheme PicX/S and the subfunctor Pic0

X/S of line bundles of degree zero on 
each fibre of π is projective abelian scheme over S [20, Remark 5.26]. For any closed 
subscheme i : Y ⊂ X, we have a surjective map

Gm,X → i∗Gm,Y ,

and we define the fppf sheaf Gm,X:Y to be the kernel. If Y is étale over S, then 
R1π∗i∗Gm,Y vanishes, and there is a short exact sequence of fppf sheaves

0 → π∗i∗Gm,Y /π∗Gm,X → R1π∗Gm,X:Y → R1π∗Gm,X → 0 .

Thus R1π∗Gm,X:Y is represented by an S-group scheme PicX:Y/S which is an extension 
of PicX/S by the S-torus π∗i∗Gm,Y /π∗Gm,X (cf. [6, §2.1]). We let Pic0

X:Y/S denote the 

pullback of this extension to Pic0
X/S , this is therefore a semi-abelian scheme over S.

Now let Z ⊂ X be another closed subscheme, étale over S and such that Y ∩ Z = ∅. 
We define DivZ(X, Y ) as the fppf sheaf associated to

T/S �→ H1
ZT

(XT ,Gm,X:Y ).

By construction there is a natural map u : DivZ(X, Y ) → PicX:Y/S , and we can consider 
its pullback

u0 : Div0
Z(X,Y ) → Pic0
X:Y/S
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to Pic0
X/S . This object is a 1-motive over S, and we denote it by Pic+(X, Y ) (or Pic+(X)

when Y = ∅) where X := X \ Z. This is the version over S of the motive defined in [6, 
Def. 2.2.1].

Let Δeff
1 ⊂ Δeff

g be the full sub-diagram whose vertices are (X, Y, 1) for X a smooth 
affine curve over K, Y a closed subset consisting of finitely many closed points of X. We 
denote by CNMeff

1 the Nori category universal3 for the standard representation

H1 : Δeff
1 → ModQ

(X,Y, 1) �→ H1(X(C), Y (C),Q).

Moreover we can define the following representation

Pic+ : Δeff
1 → M1 (X,Y, 1) �→ Pic+(X,Y ) = [Div0

Z(X,Y ) → Pic0
X:Y/K ]

where X is the smooth compactification of X and Z = X \X is the boundary divisor. 
By universality this functor factors through CNMeff

1 and it is show in [4, Theorem 5.6]
that this induces equivalence of categories

CNMeff
1

∼=−→ M1,Q .

Proposition 5.1. There is a functorial isomorphism

TFOg
(
Pic+(X,Y )

)
= H1

FOg(X,Y )(1).

In particular the filtered Ogus realisation is compatible with that on one motives, in the 
sense that the diagram

M1,Q
TFOg

FOg(K)

DMgm(K)
RFOg

Db(FOg(K))

commutes up to natural isomorphism.

Proof. In [4, Proposition 8.3] the authors show the (homological) compatibility be-
tween the embedding of 1-motives in DMeff

gm and that in (the homological version of) 
Db(CNM). The cohomological version is just a reformulation; the second claim therefore 
follows from the first.

Let TdR denote the de Rham realisation on M1. To prove the first, we note that [6, 
Lemma 2.6.2] provides isomorphisms

3 This is the cohomological version of the category EHM′′
1 of [4].
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TdR(Pic+(X,Y ))
∼=−→ H1(X,OX(−Y ) → Ω1

X
〈Y + Z〉(−Y ))

∼=−→ H1
dR(X,Y/K)

of K-vector spaces. Indeed, the de Rham cohomology of X is computed by the complex 
OX → Ω1

X
〈Z〉 and that of Y by OY . Thus the relative cohomology is computed by the 

complex OX(−Y ) → Ω1
X
〈Z〉 and it is enough to note that Ω1

X
〈Z〉 = Ω1

X
〈Y +Z〉(−Y ) to 

conclude.
Now let v be an unramified place of good reduction for the triple (X, X, Y ); in other 

words not only does X have good reduction X → Spec (Ov), but the complementary 
divisors Y and Z = X \ X extend to disjoint closed subschemes Y, Z ⊂ X which are 
étale over Ov. We therefore have a 1-motive

Pic+(X ,Y)

over Ov exhibiting the good reduction of Pic+(X, Y ), and by [2, Corollary 4.2.1] we 
obtain an isomorphism

TdR
(
Pic+(X,Y )

)
⊗K Kv

∼=−→ Tcris
(
Pic+(X ,Y)kv

)

of Kv-vector spaces, where Tcris is the crystalline realisation of M1 over kv. Now, we 
have an isomorphism of vector spaces

H1
dR(XKv

, YKv
/Kv) → H1

rig(Xkv
,Ykv

/Kv)

which concretely is induced by the map

[IOXan
Kv

→ Ω1
Xan

Kv
] → [Ij†OXan

Kv
→ j†Ω1

Xan
Kv

]

of complexes over Xan
Kv

, where I is the ideal of Y an
Kv

(it easy to check that Ij†OXan
Kv

→
j†Ω1

Xan
Kv

computes the relative rigid cohomology H1
rig(Xkv

, Ykv
/Kv)). This induces an 

isomorphism

Tcris
(
Pic+(X ,Y)kv

)
→ H1

rig(Xkv
,Ykv

/Kv)

of Kv-vector spaces, and to conclude we need to show that this induces a Frobenius 
invariant isomorphism

Tcris
(
Pic+(X ,Y)kv

)
→ H1

rig(Xkv
,Ykv

/Kv)(1).

The key observation now is that in fact we can argue by dévissage on weights. Indeed, 
we have commutative diagrams
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0 Tcris (ker c)

∼=

Tcris
(
Pic+(X ,Y)kv

) c

∼=

Tcris
(
Pic+(X )kv

)

∼=

0

0 H0
rig(Ykv )(1)

H0
rig(Xkv )(1) H1

rig(Xkv
,Ykv

/Kv)(1) H1
rig(Xkv

/Kv)(1) 0

and

0 Tcris
(
Pic+(X )kv

)

∼=

Tcris
(
Pic+(X )kv

)

∼=

Tcris
(
Div0

Z(X )kv

)

∼=

0

0 H1
rig(X kv

/Kv)(1) H1
rig(Xkv

/Kv)(1) H0
rig(Zkv

/Kv) 0

with all rows exact. Since the pieces

Tcris (ker c)
∼=−→

H0
rig(Ykv

/Kv)(1)
H0

rig(Xkv
/Kv)(1)

Tcris
(
Pic+(X )kv

) ∼=−→ H1
rig(X kv

/Kv)(1)

Tcris
(
Div0

Z(X )kv

) ∼=−→ H0
rig(Zkv

/Kv)

are pure of weights −2, −1 and 0 respectively, we can use the fact that the weight 
filtration on an F -isocrystal over Kv is canonically split to show that it suffices to 
verify the Frobenius compatibility on these pure graded pieces. The only non trivial 
Frobenius shows up in weight −1 where the comparison is proved by Andreatta and 
Barbieri-Viale [2, Theorem B’] since H1

rig(X kv
/Kv) ∼= H1

cris(X kv
/Ov)[1/p]. �

6. The FOg avatar of the Tate conjecture

Let K be a number field and X be a smooth and projective variety over K. Fix a 
finite set of unramified places S such that X extends to a smooth and proper scheme 
X → OK,S . We may consider the de Rham cycle class map

c1,dR : Pic(X) → H2
dR(X/K)

and, for any place v /∈ S, the crystalline cycle class map

c1,cris : Pic(X) → Pic(XKv
)

∼=←− Pic(XOv
) → Pic(Xkv

) → H2
cris(Xkv

/Ov)[1/p],

which by [9, Corollary 3.7] are compatible via the comparison isomorphism4

4 The compatibility of the crystalline and de Rham cycle class has been generalised to the rigid setting 
in [12,13].



B. Chiarellotto et al. / Journal of Algebra 527 (2019) 348–365 363
H2
dR(X/K) ⊗Kv

∼→ H2
cris(Xkv

/Ov)[1/p].

Since the image of c1,cris is contained within the subspace of H2
cris(Xkv

/Kv) on which 
Frobenius φv acts via multiplication by pv, we obtain an induced cycle class map

c1,FOg : Pic(X) → HomFOg(K)(1, H2
FOg(X)(1)) =: T 1(X),

where 1 := (K, (Kv, σv)) is the unit object of FOg(K). Following the argument outlined 
in [23, (5.6)], we can show that whenever X is a K3 surface, an ‘Ogus’ version of the 
Tate conjecture holds for X, describing the rational Picard group Pic(X) ⊗Q.

Theorem 6.1. Let X/K be a K3 surface Then the cycle class map

c1,FOg : Pic(X) ⊗Q → T 1(X)

is surjective, and therefore an isomorphism.

Proof. To save notation, we will write [L] = c1,FOg(L) ∈ H2
FOg(X)(1) for any line bundle 

on X. First of all, we can show that it is enough to prove the above theorem up to finite 
base change. Indeed, if we let F/K be a finite extension and α ∈ T 1(X) then, assuming 
the result holds for XF , we can write α =

∑
i λi[Li], for some Li ∈ Pic(XF ) and λi ∈ Q. 

Now we can apply the norm to obtain

α = 1
[F : K]

∑
i

λi[NF/L(Li)]

as required.
Now, fix an ample line bundle L on X, and let P 2

FOg(X)(1) ⊂ H2
FOg(X)(1) denote 

the subspace of primitive classes, that is the orthogonal complement to K · [L] under the 
perfect pairing

H2
FOg(X)(1) ⊗H2

FOg(X)(1) → 1.

Then we have a direct sum decomposition H2
FOg(X)(1) ∼= P 2

FOg(X)(1) ⊕ 1 in FOg(K), 
which implies that T 1(X) = (P 2

FOg(X)(1) ∩ T 1(X)) ⊕ (1 ∩ T 1(X)). Since 1 ∩ T 1(X) =
Q · [L] we only need to prove the statement for α ∈ P 2

FOg(X)(1) ∩ T 1(X).
Let

jFOg : P 2
FOg(X)(1) → EndFOg(H1

FOg(A))

be the inclusion induced by the Kuga–Satake construction [21, Theorem 7.3] - since 
it suffices to prove the claim after a finite extension we can assume that everything 
is defined over K. By full faithfulness of the FOg-realisation on abelian varieties [3, 
Theorem 3.14] we have jFOg(α) =

∑
i λi[fi]FOg, for fi ∈ End(A) and λi ∈ Q.
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Now embed K into C and consider the analogous picture in Betti cohomology (sub-
script B stands for Betti cohomology)

jB : P 2
B(X(C),Q(1)) ↪→ EndQ(H1

B(A(C),Q))

which admits a retraction qB as the target is a polarised pure Hodge structure and 
the category of polarised pure Hodge structure is semi-simple [22, Corollary 2.12]. Thus 
qB([fi]B) is a Hodge class since [fi]B is so. It follows by the Lefschetz (1, 1)-theorem that 
there exists a line bundle Li ∈ Pic(XC) such that [Li]B = qB([fi]B). After replacing 
K by a finite extension, we can assume that all the Li are defined over K. By the 
compatibility of the Betti and de Rham cycle class maps we get the equality

α = qdRjdR(α) =
∑
i

λiqdR[fi]dR =
∑
i

λi[Li]dR

inside P 2
dR(XC)(1), hence we find α =

∑
i λi[Li]dR inside P 2

dR(X)(1), and the proof is 
complete. �
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