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Abstract
We compute the Ext group of the (filtered) Ogus category over a number field K . In particular
we prove that the filtered Ogus realisation of mixed motives is not fully faithful.
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1 Introduction

Recently Andreatta, Barbieri-Viale and Bertapelle [1] have defined the filtered Ogus realisa-
tion TFOg for 1-motives over a number field K . In fact by [5] there exists a cohomology theory
for K -varieties with values in FOg(K ) compatible with TFOg. More precisely letDMgm(K )

be the Voevodsky’s category of geometric motives over K , then there exists a (homological)
realisation functor

RFOg : DMgm(K ) → Db(FOg(K ))

compatible with TFOg.
The aim of this paper is to compute the Ext group in FOg (Proposition 3.2). We follow

the method of Beilinson [2,3].
It follows (see Remark 3.6) that the filtered Ogus realisation of mixed motives is not fully

faithful in general, even though TFOg is fully faithful.
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1.1 Notations and Conventions

Throughout this article, K will denote a number field. A place of K will always mean a finite
place (we will never need to consider real or complex places). For every such place v of K , let
Kv denote the completion, Ov the ring of integers, kv the residue field, pv its characteristic,
and qv = pnv

v its order. For all v which are unramified over Q, let σv denote the lift to Kv of
the absolute Frobenius of kv .

2 The Categories

2.1 The Ogus Category

Let P be a cofinite set of absolutely unramified places of K . We define CP to be the category
whose objects are systems M = (MdR, (Mv, φv, εv)v∈P ) such that:

(1) MdR is a finite dimensional K -vector space;
(2) (Mv, φv) is a F-Kv-isocrystal, that is, Mv is equipped with a σv-linear automorphism

φv;
(3) ε = (εv)v∈P is a system of Kv-linear isomorphisms

εv : MdR ⊗ Kv → Mv .

A morphism f : M → M ′ is then a collection ( fdR, ( fv)v∈P ) where:

(1) fdR : MdR → M ′
dR is a K -linear map;

(2) fv : Mv → M ′
v is Kv-linear morphism compatible with Frobenius and such that ε−1

v ◦
fv ◦ εv = fdR ⊗ Kv .

Note that by the second criterion, to specify a morphism it is enough to specify fdR. There
are obvious ‘forgetful’ functors CP → CP ′ whenever P ′ ⊂ P and we can form the Ogus
category Og(K ) as the 2-colimit

Og(K ) = 2 colim
P

CP
where P varies over all cofinite sets of unramified places of K . For an objectM ∈ Og(K ) and
n ∈ Z we denote by M(n) the Tate twist of M , that is where each Frobenius φv is multiplied
by p−n

v .

2.2 Weights

Aweight filtration on an objectM = (MdR, (Mv, φv, εv)v∈P ) ∈ CP is an increasing filtration
W•M by sub-objects in CP such that for all v ∈ P the graded pieces GrWi Mv are pure of
weight i . That is, all eigenvalues of the linear map φ

nv
v are Weil numbers of qv-weight i (i.e.

all their conjugates have absolute value qi/2v [4]). Again, to give a weight filtration on M it
suffices to give a filtration on MdR which induces a weight filtration on all Mv .

2.3 The Filtered Ogus Category

We can therefore consider the filtered Ogus category FOg(K ) whose objects are objects of
Og(K ) equipped with a weight filtration, and morphisms are required to be compatible with
this filtration.
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Lemma 2.1 ([1], Lemma 1.3.2) The filtered Ogus category FOg(K ) is a Q-linear abelian
category, and the forgetful functor

FOg(K ) → Og(K )

is fully faithful.

2.4 Internal Hom

If M, N are two objects in FOg then we can define the internal Hom, denoted by
HomFOg(M, N ) as follows:

(1) HomFOg(M, N )dR := HomK (MdR, NdR) is just the usual Hom of K -vector spaces.
(2) for all v, HomFOg(M, N )v := HomKv

(Mv, Nv) and for almost all v this Kv-vector

space is endowed with the Frobenius f �→ φN
v ◦ f ◦ (φM

v )−1

(3) Wr HomFOg(M, N ) := { f ∈ HomFOg(M, N ) : f (WiM) ⊂ Wi+r N }.

3 Ext Computation

Let M, N be two objects in Cb(FOg) (the category of bounded complexes of FOg) and
consider the following complexes

A(M, N ) = W0 Hom
•(M, N )dR

= W0 Hom
•
K (MdR, NdR)

B(M, N ) =
′∏

v

W0 Hom
•(M, N )v (restricted product)

and the morphism

ξM,N : A(M, N ) → B(M, N ) ξ(x) = (xφM − φN x), .

We want to prove that the cone of this map compute the ext-groups of FOg, i.e.

ExtiFOg(M, N ) ∼= Hi−1(Cone(ξM,N )) .

Lemma 3.1 Let ξM,N as above, then for any i and for any element b ∈ Bi (M, N ) there exist
a quasi-isomorphism N → E of complexes such that the image of b in Coker(ξM,E ) is zero.

Proof Take b ∈ B0(M, N ), so that b = (bi ) with bi ∈ ∏′
v W0 Hom(Mi , Ni )v . Then we

construct E as follows

E := Cone((0, id) : M[−1] → N ⊕ M[−1])
where everything is defined as expected but the Frobenius: φE on Ei = Ni ⊕ Mi−1 ⊕ Mi

is given by

φE (x, 0, 0) = (φN (x), 0, 0)

φE (0, y, 0) = (bidM y − dNb
i−1, φM (y), 0)

φE (0, 0, z) = (−bi z, 0, φMz)
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By construction N → E is a quasi-isomorphism and there is a short exact sequence

0 → N → E → Cone(idM )[−1] → 0 .

Finally we remark that the natural map B0(M, N ) → B0(M, E) sends b to (b, 0, 0) and we
can explicitly compute

ξM,E (0, 0, id) = (0, 0, id)φM − φE (0, 0, id) = (0, 0, φM ) − (−b, 0, φM ) = (b, 0, 0)

as expected. ��
Proposition 3.2 Let M, N be two complexes in Cb(FOg)

ExtiFOg(M, N ) ∼= Hi−1(Cone(ξM,N )) .

Proof The proof is similar to [2, Proposition 1.7]. We have by definition

ExtiFOg(M, N ) = HomDb(FOg)(M,N [i]) = colim
I

HomKb(FOg)(M, L[i])
where I is the category of quasi-isomorphisms s : N → L in the homotopy category
Kb(FOg).

By the octahedron axiom and the exactness of A(M,−), B(M,−) there is a long exact
sequence

Hi (ker ξM,N ) → Hi (Cone(ξM,N )[−1]) → Hi (coker(ξM,N )[−1]) → + .

Note that Hi (ker ξM,N ) = HomKb(FOg)(M, N [i]). By the previous lemma

colim
I

Hi (coker(ξM,L)[−1]) = 0 .

Thus we obtain the expected result by taking the colimit over I of the above long exact
sequence.

We can also give a direct proof in the case of chain complexes concentrated in degree
zero, as explained in the following remark. ��
Remark 3.3 When M, N ∈ FOg we can derive the above formula as follows. Let

0 → N → E
π−→ M → 0

be an extension in FOg. Choose a section sdR ∈ W0 Hom(M, E)dR of πd R. After base
change to Kv we get sections sv ∈ W0 Hom(M, E)v and we can define (for almost all v)

xv := sv ◦ φMv − φEv ◦ sv .

It follows that xv ∈ W0 Hom(M, N )v so that x = (xv)v is an element of
∏′

v W0 Hom(M, N )v .
Starting with another section s′

dR we will get another x ′ and the difference x − x ′ lies in
(◦φM − φN◦)W0 Hom(M, N )dR by construction. Then we easily get a map

� : Ext1FOg(M, N ) →
∏′

v W0 Hom(M, N )v

(◦φM − φN◦)W0 Hom(M, N )dR
, �(E) = (xv)v

Moreover given a family x = (xv)v as above we can define the extension Ex to be the direct
sum N ⊕ M except for the fact that we set the Frobenius to be

φE,v(n,m) := (φN ,v(n) − xv(m), φM,v(m)) .

By construction we have �(Ex ) = x and we prove that � is an isomorphism.
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Proposition 3.4 Let M, N ∈ FOg there is a short exact sequence

0 → Ext1FOg(M, N ) → Ext1Og(M, N ) →
∏′

v W≥1 Hom(M, N )v

(◦φM − φN◦)Hom(M, N )dR
→ 0 .

Proof The methods we have introduced to compute the extension groups in FOgK work also
for OgK . In fact we consider the above construction forgetting about weights

A′(M, N ) = Hom•(M, N )dR

B ′(M, N ) =
′∏

v

Hom•(M, N )v

ξ ′
M,N : A′(M, N ) → B ′(M, N ) ξ(x) = (xφM − φN x)

so that we have

ExtiOg(M, N ) ∼= Hi−1(Cone(ξ ′
M,N )) .

In particular if M, N ∈ FOg there is an exact sequence of complexes

0 → Cone(ξM,N ) = W0 Cone(ξ
′
M,N ) → Cone(ξ ′

M,N ) → W≥1 Cone(ξ
′
M,N ) → 0

whose associated long exact sequence degenerates to the short exact sequence of the state-
ment. ��
Remark 3.5 Let us consider an intermediate category FOg ⊂ FOg′ ⊂ Og whose objects are
M ∈ Og(K ) endowed with an increasing filtration Mi ⊂ Mi+1 (without any condition on
Frobenius eigenvalues). This is just an exact category and it is not full in Og. Nevertheless
FOg ⊂ Og is full and for two objects M, N ∈ FOg we have

Ext1FOg(M, N ) ∼= Ext1FOg′(M, N )

just following the previous proof.

Remark 3.6 It follows from the previous proposition that the Ext1FOg(M, N ) are not countable
in general and in particular different from motivic cohomology. For instance already for
K = Q we get

Ext1FOg(Q,Q(1)) ∼= {(ap)p ∈ ∏′
p Qp}

{(b − p−1b)p : b ∈ Q} ,

which is uncountable and so different from Ext1DM(Q,Q(1)) = Q∗ ⊗ Q. Hence the filtered
Ogus realisation of mixed motives in not full.
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