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Abstract
We study the nth arithmetic jet space of the p-torsion subgroup attached to a smooth com-
mutative formal group scheme. We show that the nth jet space above fits in the middle of
a canonical short exact sequence between a power of the formal scheme of Witt vectors of
length n and the p-torsion subgroup we started with. This result generalizes a result of Buium
on roots of unity.
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1 Introduction

Buium in [8] introduced the theory of arithmetic jet spaces on (formal) abelian schemes
over p-adic rings and showed that the jet spaces of an abelian scheme A are naturally affine
fibrations over A. Since then, the theory of arithmetic jet spaces has been developed in several
articles, such as [1, 6, 7, 9, 12, 15], and has found remarkable applications in diophantine
geometry as in [8, 13].

In [7], Borger and Saha construct filtered isocrystals associated with delta characters of
a group scheme. For an elliptic curve A defined over Zp , in [16], Pandit and Saha show
that the filtered isocrystal is weakly admissible. In particular, if A does not admit a lift of

Alessandra Bertapelle, Nicola Mazzari and Arnab Saha have contributed equally to this work.

B Alessandra Bertapelle
alessandra.bertapelle@unipd.it

Nicola Mazzari
nicola.mazzari@unipd.it

Arnab Saha
arnab.saha@iitgn.ac.in

1 Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Via Trieste 63,
35131 Padua, Italy

2 Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-023-01321-2&domain=pdf
http://orcid.org/0000-0002-0708-3975
http://orcid.org/0000-0002-1390-5189
http://orcid.org/0000-0002-9932-7569


A. Bertapelle et al.

Frobenius, then the isocrystal is canonically isomorphic to the first crystalline cohomology
of A. On the other hand, if A admits a lift of Frobenius, then the isocrystal is isomorphic
to the sub-isocrystal of the crystalline cohomology. The result can be viewed as a character
theoretic interpretation of the crystalline cohomology.

In this paper, we study the structure of the jet space functors associated with the p-
torsion subgroup G[p∞] of a smooth commutative formal group scheme G over a fixed
p-adic basis. Here we show that for any n, the nth jet space Jn(G[p∞]) is canonically an
extension of G[p∞] by a power of the unipotent formal group scheme ̂Wn−1, where ̂Wn−1

iŝA
n , the n-dimensional formal affine space endowed with the group scheme structure of the

additive Witt vectors of length n. This generalizes results obtained by Buium in [11] for G
the multiplicative group scheme. Based on our result, the theory of the isocrystals attached
to G[p∞] and its connection with [7, 16] as discussed above, will be developed in a future
article.

Before stating our main result in detail, let us introduce some notation. Let K be a finite
extension of Qp with ramification index e, uniformizer π and ring of integers O. We denote
by k the residue field of O and let q be its order. Then, the identity map of O is a lift of q-
Frobenius. Fix a π-adically complete π -torsion freeO-algebra R with a lifting of Frobenius
φ, i.e., an endomorphism of R such that φ(r) − rq ∈ πR for all r ∈ R. As an example,
consider the ring of restricted power series O〈x〉 with φ the O-algebra endomorphism given
by φ(x) = xq . Let Wn be the functor of ramified Witt vectors of length n + 1 (following
Borger’s convention, details in § 2.2).

Let NilpR be the category of R-algebras on which π (or equivalently, p) is nilpotent. Its
opposite category is a site with respect to the Zariski topology. Any adic R-algebra A with
ideal of definition I containing π gives rise to a sheaf (of sets) Spf(A) such that

Spf(A)(B) = lim−→
n

HomR(A/I n, B)

for any B in NilpR . By a formal scheme over R, we mean a sheaf on NilpopR admitting an
open cover by open subfunctors of the type Spf(A) for A as above.

Given a sheaf X on NilpopR , we define its nth π -jet by

Jn X(C) = X(Wn(C)) (1.1)

for any C ∈ NilpR . If X is a formal scheme over R, the same is Jn X and it holds

HomR(Spf(C), Jn X) = HomR(Spf(Wn(C)), X) (1.2)

[2, 4, 7, 8].
For a smooth commutative formal group scheme G over R, there is a short exact sequence

of formal group schemes

0 → NnG → JnG → G → 0, (1.3)

which we call the canonical Witt formal scheme extension of G because of Theorem 3.10.
Let G[pν] be the pν-torsion formal subgroup scheme of G, and let G[p∞] denote the sheaf
on NilpopR such that G[p∞](C) = lim−→ν

G[pν](C), for any C ∈ NilpR . For each ν, the

closed immersions G[pν] ↪→ G[pν+1] induce closed immersions of π-jets Jn(G[pν]) ↪→
Jn(G[pν+1]) and

Jn(G[p∞]) = lim−→
ν

Jn(G[pν])

as sheaves on NilpopR ; see Lemma 4.1.
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Consider the natural projection map u : Jn(G[p∞]) → G[p∞] and let Nn(G[p∞])
denote the kernel of u. Buium in [11, Corollary 1.2] shows that if e = 1, p > 2 and G is the
formal multiplicative group scheme over R, then the sheaf Nn(G[p∞]) is representable by
a formal R-scheme and is isomorphic to ̂A

n , the n-dimensional affine space over Spf(R).
In this paper, we will enrich Buium’s result and extend it to any smooth commutative

formal R-group scheme G of relative dimension d ≥ 1. In fact, in Theorem 3.10 we show
that if p ≥ e+2 the kernel Nn(G[p∞]) is isomorphic to (̂Wn−1)

d where ̂Wn−1 iŝAn endowed
with the group structure of Witt vectors of length n. Further, we deduce the following result
(see Theorem 4.6).

Main Theorem 1 Assume p ≥ e + 2. Given a smooth commutative formal group scheme G
of relative dimension d over R, for any positive integer n the natural morphism JnG → G
gives an exact sequence

0 → (̂Wn−1)
d → JnG[p∞] → G[p∞] → 0

of sheaves on NilpopR .

We remark that by Lemma 4.1 it is Jn(G[p∞]) = (JnG)[p∞] as sheaves on NilpopR ; hence,
there is no possible ambiguity in the above statement.

1.1 Plan of the paper

In Sect. 2, we recall the definition and properties of π -jets in the setting of formal schemes,
with particular attention to the adjunction between jet algebras and Witt vectors (2.13).

In Sect. 3, we focus on the notion of shifted Witt vectors W+
n , introduced by [7], and

show that W+
n induces an adjoint functor to Nn (Theorem 3.3). This is an important result,

analogous to the adjunction formula that involvesWn and Jn (1.2). Then, we show that given
a smooth formal R-group scheme G of dimension d , we have

(i) For all n > 0, NnG � Jn−1(N 1G); see Theorem 3.7.
(ii) Assume p ≥ e + 2. Then, there is a natural isomorphism of formal group schemes

NnG � (̂Wn−1)
d ; see Theorem 3.10.

The proof of the first fact reduces to a local computation in coordinates, which is detailed
in “Appendix” section. Another important ingredient is the notion of lateral Frobenius intro-
duced in [7]. Both results (i) and (ii) are generalized to the case of m-shifted Witt vectors in
[16] by the third author.

In Sect. 4, we apply the previous results to the study of the sheaves Jn(G[p∞]) and
Nn(G[p∞]) and deduce a statement similar to Theorem 3.10 whereG is replaced byG[p∞],
see Theorem 4.6.

In this paper, all rings are assumed to be commutative with unit and AlgR denotes the
category of R-algebras, i.e., of ring homomorphisms R → B.

2 Arithmetic jets

2.1 Conventions

Let R be the base ring fixed in the introduction. Given a formal scheme X and a fixed
point x : Spf(R) → X , one can consider the fibre of x under the natural map Jn X → X ,
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which is the closed formal subscheme NnX = (Jn X)x = Jn X ×X Spf(R). Note that if
G is a formal group scheme, then JnG is naturally a formal group scheme too and we set
NnG = (JnG)ε = ker(JnG → G) to be the fibre along the unit section ε.

If X is a functor on AlgR , we will usually denote by ̂X the restriction of X to NilpR . Let
R〈x1, ..., xn〉 be the π -adic completion of the R-polynomial algebra in n variables.

Let ̂Ga := Spf(R〈x〉) be the additive formal group scheme over R. Note that this formal
group scheme should not be confused with the (x)-adic formal group G

for
a = Spf(R[[x]]),

the formal completion of Ga along the zero section.
IfF ∈ R[[x, y]] is a commutative formal group law of dimension g, letF{n} be the formal

group law given by π−nF(πnx, πny), for any n ≥ 1. Note that F{n} endows Spf(R〈x〉)
with a structure of formal group scheme over R.

If B is an R-algebra, ρ = ρB : R → B always denote the corresponding ring homomor-
phism. If the context is clear, we will write r in place of ρ(r) ∈ B.

2.2 Witt vectors over R

In the following pages, Wn denotes the functor of π -typical Witt vectors of length n + 1
on R-algebras. Hence, for any R-algebra B, the ring Wn(B) is always considered with its
natural R-algebra structure, which depends on φ. We explain this briefly.

As functor onO-algebrasWn coincides with the so-called functor of ramifiedWitt vectors
of length n+ 1 (see [3, 14]). Let w : Wn(R) → ∏n

i=0 R be the ghost map. Then for any Witt
vector a = (a0, . . . , an), w(a) = (w0(a), . . . , wn(a)) where wi are the ghost polynomials

wi = xq
i

0 + πxq
i−1

1 + · · · + π i xi . (2.1)

Since R has a lifting of Frobenius φ, by the universal property of Witt vectors there exists
a ring homomorphism of O-algebras expδ making the following diagram commute (see [2,
(2.9)])

R
expδ

(φ0,φ,...,φn)

Wn(R)

w

∏n
i=0 R

(2.2)

Let B be an R-algebra. Then Wn(B) is naturally endowed with the R-algebra structure

R
expδ−→ Wn(R)

Wn(ρB )−→ Wn(B).

In [7, §3.2], the authors give an equivalent construction of the functorWn . The ghost map
w in (2.2) is O-linear, but not R-linear in general, if the ring

∏n
i=0 R is endowed with the

direct product R-module structure. It is then preferable to change the R-module structure on
the product ring so that w becomes R-linear. Let φn

B denote the ring B with the R-algebra
structure induced by ρB ◦ φn : R → B, and let

∏n

φ
(B) :=

n
∏

i=0

(φ
i
B) (2.3)
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be the direct product algebra. Its underlying ring is
∏

i B and there is a commutative diagram
of R-algebras

R
ϕ

(id,φ,...,φn)

Wn(R)

w

Wn(ρB )
Wn(B)

w

∏n
φ(R)

∏

i (ρB ) ∏n
φ(B)

(2.4)

Then, Frobenius and Verschiebung maps can be described in terms of ghost components as
in the case of ramified Witt vectors, with caution when considering the R-algebra structure.
As for example, the Frobenius ring homomorphism F : Wn(B) → Wn−1(B) described in
terms of ghost components as the left shift is φ-semilinear. We prefer then to write it as the
homomorphism of R-algebras

F : Wn(B) → Wn−1(
φB) (2.5)

corresponding to the homomorphism of R-algebras

Fw :
∏n

φ
(B) →

∏n–1

φ
(φB), (b0, . . . , bn) 
→ (b1, . . . , bn). (2.6)

Similarly, the Verschiebung map V : Wn(B) → Wn+1(B) is described on ghost components
as the right shift multiplied by π . Clearly it isO-linear but not R-linear in general. We prefer
then to write it as the homomorphism of R-modules

V : Wn(
φB) → Wn+1(B) (2.7)

corresponding to the homomorphism of R-modules

Vw :
∏n

φ
(φB) →

∏n+1

φ
(B), (b0, . . . , bn) 
→ (0, πb0, . . . , πbn). (2.8)

Then, FV is multiplication by π on Wn(
φB).

Since φ might not be invertible, one cannot write B in place of φB in (2.5) and (2.7).
However, since φ is the identity on O, the O-module structure on B and φB are the same.

Remark 2.1 If B is a π-adic R-algebra (by this we mean π-adically complete and separated),
then the same is Wn(B) for any n. The proof works as in [18, Proposition 3].

2.3 ShiftedWitt vectors

We recall the construction of 0-shifted Witt vectors as introduced in [7, 16]. Here we simply
refer to them as shiftedWitt vectors. The general theory ofm-shiftedWitt vectors is developed
in [16].

Let B be an R-algebra and set-theoretically define

W+
n (B) := R ×B Wn(B) � R × Wn−1(B). (2.9)

Also define the product ring

∏+
n
(B) := R ×

n
∏

i=1

(φ
i
B) = R ×

∏n−1

φ
(φB),
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where
∏n

φ(B) was introduced in (2.3). Note that there is an isomorphism of R-algebras

∏+
n
B := R ×

∏n−1

φ
(φB) � R ×B

∏n

φ
(B)

mapping (r , b1, . . . , bn) to the element (r , (ρ(r), b1, . . . , bn)).
Define the apriori set-theoreticmapw+ : W+

n (B) → ∏+
n (B) given byw+(r , b1, . . . , bn)

= (w0, . . . , wn) where

wi = rq
i + πbq

i−1

1 + · · · + π i bi ,

for all i = 0, . . . , n. Then, note that W+
n (B) naturally is endowed with the Witt ring struc-

ture of addition and multiplication making w+ a ring homomorphism. Hence, we have the
following commutative diagram

W+
n (B)

w+

�

∏+
n (B)

pr

�

R

ρ

Wn(B)
w ∏n

φ(B)
pr0

B

(2.10)

where pr0 is the projection onto the 0th component. The R-algebra W+
n (B) was denoted by

W̃n(B) in [7, §4] and by W0n(B) in [16].
Since the lower horizontal arrows in (2.10) are homomorphisms of R-algebras, the same

are the upper horizontal arrows. Hence, the left-hand square in (2.10) is a diagram of R-
algebras and, up to the above identifications, it can be illustrated as

R × Wn−1(
φB)

w+
R × ∏n–1

φ (φB)

Wn(B)
w ∏n

φ(B)

(

r , (b1, . . . , bn)
) (

r , (w1(r , b.), . . . , wn(r , b.))
)

(r , b1, . . . , bn) (r , w1(r , b.), . . . , wn(r , b.))

(2.11)

where we have written r in place of ρ(r) in B and wi are the ghost polynomials in (2.1).

2.4 Prolongation sequences

For any formal schemes Y and Z over Spf(R), we say that (u, δ) : Z → Y is a prolongation
if u : Z → Y is a morphism of formal schemes over Spf(R) and δ : OY → u∗OZ is a
π-derivation on the sheaves (cf. Appendix A). Then, a sequence of formal schemes T ∗ =
{T n}∞n=0 is a prolongation sequence if for each n, (un, δn) : T n+1 → T n is a prolongation
of formal group schemes over Spf(R) satisfying u∗

n−1 ◦ δn = δn−1 ◦ u∗
n and making the

following diagram commute

R u∗OZ

R

δ

OY

δ

A morphism of prolongation sequences T ∗ → P∗ is a system of morphisms of formal
schemes fn : T n → Pn that satisfy the expected commutations: fn ◦ un = un ◦ fn+1 and
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fn ◦ δn = δn ◦ fn+1. For each n, let Sn = Spf(R). Then, the fixed π-derivation δ on R makes
S∗ into a prolongation sequence. Let CS∗ denote the category of prolongation sequences
defined over S∗.

2.5 Jet spaces

Given a formal scheme X over S0 = Spf(R), Buium constructs the canonical prolongation
sequence J ∗X = {Jn X}∞n=0 where J 0X = X and by [9, Proposition 1.1], J ∗X satisfies the
following universal property: for any T ∗ in CS∗ it is

HomS0(T
0, X) = HomCS∗ (T ∗, J ∗X) . (2.12)

Moreover, by [2, 5] we have the following functorial description:

Jn X(C) = X(Wn(C))

for any C ∈ NilpR . In particular in the affine case with X = Spf(A) and Jn X = Spf(Jn A),
we have a natural adjunction


 : HomR(Jn A,C)
∼−→ HomR(A,Wn(C)) (2.13)

such that w0 ◦ 
(g) = g ◦ ι with ι : A → Jn A the natural morphism.
Here we make the above adjunction explicit when X = Spf(R〈x〉) is the formal affine

line over Spf(R). Let A = R〈x〉. Then, Jn X = Spf(Jn A) and

Jn A = R〈x, x ′, . . . x (n)〉 = R〈p0, . . .pn〉 (2.14)

where x, x ′, . . . , x (n) are theBuium–Joyal coordinates andp0, . . .pn are theWitt coordinates,
and they satisfyp0 = x ,p1 = x ′, while the general relation between the above two coordinate
systems can be found in [2, Proposition 2.10].

If g ∈ HomR(Jn A,C), then 
(g) ∈ HomR(A,Wn(C)) is determined by


(g)(x) = (g(p0), . . . , g(pn)).

Note that when G = ̂Ga we have the following isomorphism of formal group schemes

Jn̂Ga = ̂Wn . (2.15)

where ̂Wn iŝA
n+1 endowed with the additive group structure of Witt vectors of length n+1.

3 The Kernel as a �-jet space

For any sheaf of groups G on NilpopR , one defines

NnG := ker(JnG
u−→ G)

where u is the natural morphism. Scope of this section is to take a closer look at the kernel
NnG in the case G is representable by a smooth formal scheme. Since the kernel is the fibre
at the unit section, we will first consider more general fibres.

Let X be a smooth formal scheme over R with a marked point a and let u : U → A =
Spf(R〈x〉) be an étale chart around a, where x denotes here a finite family of indeterminates.
Hence, U is an open affine formal subscheme of X , u is étale, a factors through u and u ◦ a
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is the zero section 0 of the affine space A. By [10, Proposition 3.13 & Corollary 3.16] (see
also [2, Proposition 3.12]), we have JnU � JnA ×A U for all n and hence

NnX = Jn X ×X ,a Spf(R) = JnU ×U ,a Spf(R) = JnA ×A,0 Spf(R) = Nn
A (3.1)

in particular, NnX is formal affine and isomorphic to NnU . Up to shrinking U , we may
assume U = Spf(A) with A a π -adically complete separated R-algebra. Then, the point
a : Spf(R) → U induces an R-algebra morphism ε : A → R. Let JnU = Spf(Jn A). It is
immediate to check that

NnU = Spf(Jn A⊗̂A,εR). (3.2)

3.1 Adjunction

Let Alg+
R denote the category of augmented (commutative) R-algebras. Its objects are

commutative R-algebras A together with an augmentation ε, i.e., an R-algebra morphism
ε : A → R; morphisms in Alg+

R are morphisms of R-algebras h : A1 → A2 respecting
augmentations, i.e., ε2 ◦ h = ε1. For any (A, ε) in Alg+

R , we define the R-algebra

Nn A := Jn A ⊗A,ε R. (3.3)

Note that shifted Witt vectors yield objects in Alg+
R . Indeed, let B be an R-algebra and let

w+
0 : W+

n (B) → R denote the projection onto the first component, i.e., the composition
of the upper horizontal arrows in (2.10). Then, W+

n (B) together with w+
0 is an augmented

R-algebra. Hence, the above construction defines a functor

W+
n : AlgR −→ Alg+

R B 
→ (W+
n (B), w+

0 )

on the category of R-algebras.
We now prove a key result: Nn and W+

n is a pair of adjoint functors.

Theorem 3.1 For any augmented R-algebra (A, ε) and any R-algebra B, there is a natural
bijection


+ : HomR(Nn A, B)
∼−→ HomAlg+

R
(A,W+

n (B)). (3.4)

Proof Let ι : A → Jn A denote the natural morphism. Then,

HomR(Nn A, B) = {g ∈ HomR(Jn A, B) | g ◦ ι = ρB ◦ ε}
= { f ∈ HomR(A,Wn(B)) | w0 ◦ f = ρB ◦ ε}
= { f + ∈ HomR(A,W+

n (B)) | w+
0 ◦ f + = ε}

= HomAlg+
R
(A,W+

n (B))

where the first equality follows by (3.3), the second by (2.13) taking f = 
(g), the third by
definition of W+

n (B) in (2.9). ��
By Remark 2.1, an analogous adjunction holds when working with the category of aug-

mented formal R-algebras fAlg+
R . We make this fact explicit.

Example 3.2 Let A = R〈x〉 and ε(x) = 0. By (2.14)

Nn A = Jn A⊗̂A,εR = R〈x ′, . . . , x (n)〉 = R〈p+
1 , . . . ,p+

n 〉,
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where p+
i ∈ R[x ′, . . . , x (n)] denotes the polynomial pi ∈ R[x, x ′, . . . , x (n)] evaluated at

x = 0. Then, the formal counterpart of (3.4) works as follow: given g ∈ HomR(Nn A, B),
then 
+(g) maps x to (0, g(p+

1 ), . . . , g(p+
n )).

The higher-dimensional case is analogous. Let A = R〈x〉 with x a collection of r indeter-
minates {x1, . . . , xr } and let ε be the zero section. Then, Jn A � R〈p0,p1, . . . ,pn〉 where pi
denotes a collection of polynomials {pi,1, . . . ,pi,r } and pi, j ∈ R[x j , x ′

j , ..., x
(n)
j ] plays the

role of pi in (2.14). Then,

Nn A � R〈p0, . . . pn〉⊗̂R〈x〉,ε R � R〈p+
1 , . . . ,p+

n 〉, (3.5)

where p+
i denotes the collection of polynomials {p+

i,1, . . . ,p
+
i,r } with p+

i, j obtained by eval-
uating pi, j at x j = 0. Finally, for a homomorphism g : Nn A → B, 
+(g) maps xi to
(0, g(p+

1,i ), . . . , g(p
+
n,i )).

We can now describe the functor NnX on R-algebras as done in (1.2) for Jn X .

Theorem 3.3 Let X be a smooth formal scheme over R with a marked point x and let B be
in NilpR. Then,

Nn X(B) = HomR-pt(Spf(W
+
n (B)), X),

where on the right we are considering morphisms of R-pointed formal schemes.

Proof The result is clearly true if X is affine by Theorem 3.1. For the general case, assume
first that X is an R-scheme and consider the following diagram

Spec(B)

g

ρ

w0
Spec(Wn(B))

f
Spec(R)

x

w+
0

Spec(W+
n (B))

f +

Jn X
u

X

where w0 is induced by the projection on the first component on algebras, ρ is the structure
morphism and u is the natural map. Note that Spec(W+

n (B)) is the push-out of w, ρ in the
category of all schemes [17, 07RS]. Then, NnX(B) = X(W+

n (B)). Indeed,

NnX(B) = {g ∈ HomR(Spec(B), Jn X) | u ◦ g = x ◦ ρ}
= { f ∈ HomR(Spec(Wn(B)), X) | f ◦ w0 = x ◦ ρ}
= { f + ∈ HomR(Spec(W+

n (B)), X) | f + ◦ w+
0 = x}

= HomR−pt(Spec(W
+
n (B)), X).

If X is a formal scheme, then the above holds for all schemes X × Spec R/(πm) and thus
one concludes. ��

3.2 A special case

Let G be a formal group scheme over R and denote by Gfor the formal completion of G
along the unit section. Let F ∈ R[[x1, . . . , xr , y1, . . . , yr ]] be the formal group law on Gfor,
Fφ the one obtained by acting on the coefficients of F by φ and Fφ{1} := π−1Fφ(πx, πy),
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where πx := (πx1, . . . , πxr ). By [8, Lemma 2.2] it is N 1 G � Fφ{1} as formal R-schemes.
We give below a direct computation of this fact.

Lemma 3.4 Let the notation be as above. Then, the formal group lawon the formal completion
of N 1G at the origin is isomorphic to Fφ{1}.

Proof As seen in Remark 3.2, we may write Gfor = Spf(R[[x]]) and N 1 G = Spf(R〈p+
1 〉) =

Spf(R〈x′〉). Let δ : R[[x, y]] → R[[x, y, x′, y′]] be the π-derivation compatible with that of
R and such that δ(x) = x′, δ(y) = y′. If F(x, y) is the formal group law of G, the formal
group law of N 1G is δ(F(x, y)) evaluated at x = 0, y = 0. WriteF(x, y) = ∑

α,β aα,βxαyβ

with α, β varying in N
r

� {0}, xα := xα1
1 xα2

1 . . . xαr
r , and the coefficients of the monomials

of degree 1 equal to 1. By induction, applying the usual rules of π-derivations, one checks
that

δ(F(x, y))|x=0,y=0 =
∑

α,β

δ(aα,βxαyβ)|x=0,y=0

=
∑

α,β

π−1φ(aα,β)(πx′)α(πy′)β = π−1Fφ(πx, πy) = Fφ{1}.

��

3.3 Lateral Frobenius

Let X be a formal R-scheme. As n varies, the π -jet spaces Jn X form an inverse system of
formal schemes and, more precisely, a prolongation sequence, whence a lifting of Frobenius
φJ exists on the limit. Clearly, the transition maps u = un+1

n : Jn+1X → Jn X induce
homomorphisms Nn+1X → NnX , but the image of φ restricted to Nn+1X is not necessarily
contained in NnX , and hence, φ does not induce a lifting of Frobenius on the sequence of
the kernels. For this reason, the notion of lateral Frobenius was introduced and studied in [7,
16].

On shifted Witt vectors, the lateral Frobenius F+ is defined as the homomorphism of
R-algebras making the following diagram

W+
n (B)

F+
W+

n−1(
φB)

R × Wn−1(
φB)

id×F
R × Wn−2(

φ2
B),

(3.6)

commute, where vertical identifications are meant as sets, and F is the Frobenius on Witt
vectors recalled in (2.5). The homomorphism F+ then corresponds to the homomorphism of
R-algebras

F+
w : R ×

∏n–1

φ
(φB) → R ×

∏n–2

φ
(φ

2
B), (r , b1, . . . , bn) 
→ (r , b2, . . . , bn) (3.7)
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via ghost map, i.e., it makes the following diagram

W+
n (B)

w+

F+

∏+
n (B) = R × ∏n–1

φ (φB)

F+
w

W+
n−1(

φB)
w+ ∏+

n–1(
φB) = R × ∏n–2

φ (φ
2
B)

(3.8)

commute. Then, the homomorphism F+ induces via (2.13) a natural morphism

f : NnX → Nn−1X

called again lateral Frobenius. It is showed in [7, Theorem 4.3] that f is a lift of Frobenius
and satisfies

φ ◦ φ ◦ u = φ ◦ u ◦ f,

where u denotes the immersion NmX → Jm X and φ denotes the Frobenius morphism
Jm X → Jm−1X for any m.

Remark 3.5 For later use, note that the element (0, b.) = (0, b1, . . . , bn) ∈ W+
n (B) traces in

(3.8) the following images

(0, b1, . . . , bn) (0, πb1, πb
q
1 + π2b2, . . . , πwn−1(b.))

(0, c1, . . . , cn−1) (0, πbq1 + π2b2, . . . , πwn−1(b.)).

Hence, πc1 = πbq1 + π2b2 implies c1 = bq1 + πb2 (for B without π-torsion and hence for
any R-algebra B by standard arguments). By recursion, one sees

(F+)i (0, b1, . . . , bn) = (0, bq
i

1 + πbq
i−1

2 + · · · + π i bi , . . . ) ∈ W+
n−i (B)

for any i < n.

If G is smooth over R, the same are JnG and NnG for all n. As seen in the previous
section, NnG = Spf(Nn A) is an affine space over R. In particular, the R-algebras Nn A are
π-torsion free, and therefore, the lateral Frobenius homomorphisms f∗ : Nn A → Nn+1A
induce a unique π-derivation � on the prolongation sequence N∗A := {Nn A}∞n=1.

In order to describe Nn as a jet functor, we need a preparation lemma.

Lemma 3.6 Let A = Spf(R〈x〉) with x a collection of r indeterminates, and choose the
origin as marked point. Let fi : Nn

A → Nn−i
A denote the i th fold composition of lateral

Frobenius for any i ≤ n. Then, fi induces an homomorphism of π-adic R-algebras

(fi )∗ : R〈p+
1 , . . . ,p+

n−i 〉 −→ R〈p+
1 , . . . ,p+

n 〉
such that

(fi )∗(p+
1 ) = (p+

1 )q
i−1 + π(p+

2 )q
i−2 + · · · + π i−1p+

i .
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Proof Recall from Example 3.2 that Nn
A = Spf(NnR〈x〉) � Spf(R〈p+

1 , . . . ,p+
n 〉). Then

by definition of f and (3.4) with B = NnR〈x〉, we have a commutative diagram of rings

HomR(R〈p+
1 , . . . ,p+

n 〉, R〈p+
1 , . . . ,p+

n 〉)

−◦(f∗)i


+
∼ HomfAlg+

R
(R〈x〉,W+

n (R〈p+
1 , . . . ,p+

n 〉))

(F+)i◦−

HomR(R〈p+
1 , . . . ,p+

n−i 〉, R〈p+
1 , . . . ,p+

n 〉) 
+
∼ HomfAlg+

R
(R〈x〉,W+

n−i (R〈p+
1 , . . . ,p+

n 〉))

By Remark 3.5, the identity map on R〈p+
1 , . . . ,p+

n 〉 traces the following images

id x 
→ (0,p+
1 , . . . ,p+

n )

(f∗)i x 
→ (0, (p+
1 )q

i−1 + π(p+
2 )q

i−2 + · · · + π i−1p+
i , . . . ).

The conclusion follows by the explicit description of the map 
+ as in the lines below (3.5)
��

We can now prove the main result of this section. This is a particular case of [16, Theo-
rem 1.3] for which we give a shorter proof.

Theorem 3.7 Let G be a smooth formal group scheme over R. Then for all n we have

NnG � Jn−1(N 1G).

Proof Let A = Spf(R〈x〉) be an étale coordinate system around the identity section of G.
We have seen in (3.1) and Example 3.2 that NnG = Nn

A = Spec Nn A with Nn A �
R〈p+

1 , . . . ,p+
n 〉. Now by Lemma 3.6 the lateral Frobenius satisfies

(f∗)i (p+
1 ) = (p+

1 )q
i−1 + π(p+

2 )q
i−2 + · · · + π i−1p+

i

for all i = 0, . . . , n. Hence, by Theorem 4.9 we have Nn A � Jn−1(N1A) and we are done.
��

Here we discuss examples for G = ̂Ga and ̂Gm in the context of Theorem 3.7

Examples 3.8 1. Assume G = ̂Ga = Spf(R〈x〉) with the comultiplication mapping x to
x ⊗ 1 + 1 ⊗ x . Then, J 1̂Ga = Spf(R〈x, x ′〉) where the group law is described by

x 
→ x ⊗ 1 + 1 ⊗ x ,

x ′ 
→ x ′ ⊗ 1 + 1 ⊗ x ′ + Cπ (x ⊗ 1, 1 ⊗ x)

with Cπ (X , Y ) = Xq+Yq−(X+Y )q

π
∈ O[X , Y ]. Hence, N 1

̂Ga = Spf(〈x ′〉) = ̂Ga. By
Theorem 3.7 and Eq. (2.15), one concludes Nn

̂Ga = Jn−1(̂Ga) = ̂Wn−1.
2. Assume G = ̂Gm = Spf(R〈x, y〉/(xy − 1) with the comultiplication mapping x to

x ⊗ x . Then, J 1̂Gm = Spf(R〈x, y, x ′, y′〉/(xy − 1, δ(xy)) = Spf(R〈x, x−1, x ′〉) with
the group law described by

x 
→ x ⊗ x ,

x ′ 
→ x ′ ⊗ xq + xq ⊗ x ′ + πx ′ ⊗ x ′ .
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Hence, N 1
̂Gm = Spf

(

R〈x ′, y′〉/(x ′ + y′ + πx ′y′)
) = Spf(R〈x ′〉) and the group law

on the latter maps x ′ to x ′ ⊗1+1⊗ x ′ +πx ′ ⊗ x ′, i.e., N 1
̂Gm = G

for
m {1} as formal group

schemes. Now, G
for
m {1}, as formal group law, has invariant differential (1 + πT )−1dT

and the corresponding logarithm is

π−1 log(1 + πT ) =
∑

j≥1

(−π) j−1

j
T j = T +

∑

j≥2

a j T
j ∈ K [[T ]].

Assume p ≥ e + 1. We prove that π−1 log(1 + πT ) ∈ O[[T ]] and indeed in O〈T 〉. It
suffices to check that vπ (a j ) ≥ 0 tends to infinity as j tends to infinity. Let r > 0 and
note that vπ (apr ) = pr − 1 − er ≥ 0 since

pr − 1 = (p − 1)(pr−1 + · · · + 1) ≥ er .

Further vπ (apr ) < vπ(apr+1) and for pr ≤ j < pr+1 we have

vπ (apr ) = pr − 1 − er ≤ j − 1 − vπ ( j) = vπ (a j ).

Hence π−1 log(1 + πT ) ∈ O〈T 〉 and it defines a morphism of formal group schemes
G

for
m {1} → ̂Ga. It is an isomorphism under the stronger hypothesis that p ≥ e + 2.

Indeed, the inverse of π−1 log(1 + πT ) is

π−1(exp(πT ) − 1) =
∑

j≥1

(πT ) j

j ! ∈ K [[T ]],

and the π-adic valuation of the j th coefficient is

vπ (π j/ j !) = j − vπ ( j !) = j − e · j − sp( j)

p − 1
= j(p − 1 − e) + esp( j)

p − 1
,

where sp( j) denotes the sum of the digits in the base-p expansion of j . Clearly, if p ≥
e+2 this valuation tends to infinity as j tends to infinity, and hence,π−1(exp(πT )−1) ∈
O〈T 〉. Then, if p ≥ e + 2, one concludes that N 1

̂Gm � ̂Ga and, with arguments as in
Example 3.8(1), that Nn

̂Gm � ̂Wn−1.

The next result is an extension of [8, Lemma 2.3].

Lemma 3.9 Let F be a commutative formal group law over R of dimension d. If n(p− 1) ≥
e + 1, then F{n} � (̂Ga)

d as formal group schemes over R.

Proof In [8, Lemma 2.3], R is a complete discrete valuation ring with algebraically closed
residue field. The proof in our hypothesis works the same. Indeed, Buium applies results in
[14] that are valid for any Z(p)-algebra and the key-point is showing that the coefficients of
the logarithm and exponential series of F{n} over R[1/p] are indeed in πR. This is done by
explicit estimates for the π -valuation of those coefficients. ��

Theorem 3.10 Let G be a smooth commutative formal group scheme of relative dimension
d over Spf(R). Assume p ≥ e + 2. Then there is a natural isomorphism of formal group
schemes

NnG � (̂Wn−1)
d .
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Proof Let Gfor be the formal completion of G along the unit section Spf(R) → G. Let
F ∈ R[[x1, . . . , xd , y1, . . . , yd ]] be the formal group law on Gfor, Fφ the one obtained by
acting the coefficients of F by φ and Fφ{1} : = π−1Fφ(πx., π y.). By Lemma 3.4 (see also
[8, Lemma 2.2]), it is N 1G � Fφ{1} as formal group schemes. Note that since φ(π) = π it
is Fφ{1} = (F{1})φ . Now by hypothesis and Lemma 3.9, we have F{1} � (̂Ga)

d . Hence,
F{1}φ � ((̂Ga)

d)φ = (̂Ga)
d and hence N 1G � (̂Ga)

d . By Theorem 3.7 and definition of
Jn−1, it is

NnG � Jn−1(̂Ga)
d � (Jn−1

̂Ga)
d � (̂Wn−1)

d .

��
Remark 3.11 Assume R = O, p > 2 and let G be as in the previous theorem. Then, passing
to limit on n, we have a short exact sequence

0 → N∞G(k) → J∞G(k) = G(O) → G(k) → 0

where G(O) → G(k) is the reduction map, and we recover the fact that the kernel of the
reduction map is isomorphic to Od = W (k)d as groups.

4 p-power torsion

For any formal commutative R-group scheme G, let G[pν] denote the kernel of the multi-
plication by pν on G and let G[p∞] be the sheaf on NilpopR such that

G[p∞](C) = lim−→
ν

G[pν](C) (4.1)

for any C in NilpR . Note that G[p∞] is a sheaf since the above colimit commutes with
equalizers [17, 04AX]. If G is a formal torus or a formal abelian scheme G[p∞] is p-
divisible, but not in general.

For each ν > 0 the closed immersions G[pν] ↪→ G[pν+1] induce closed immersions of
π-jets Jn(G[pν]) ↪→ Jn(G[pν+1]) [9, Proposition 1.7], [2, Lemma 3.8, Theorem 3.9]. We
can naturally pass to limit on ν.

Lemma 4.1 Let the notation be as above. Then

Jn(G[p∞]) = lim−→
ν

Jn(G[pν]) = Jn(G)[p∞]

as sheaves on NilpopR .

Proof Recall (1.1) and (4.1). For any C in NilpR it is

Jn(G[p∞])(C) = G[p∞](Wn(C)) = lim−→
ν

G[pν](Wn(C)) = lim−→
ν

Jn(G[pν])(C).

Whence the first isomorphism. The second one follows by the fact that Jn is left exact (being
a right adjoint) and hence

lim−→
ν

Jn(G[pν])(C) = lim−→
ν

((JnG)[pν])(C) = (Jn(G)[p∞])(C).

��
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Recall that NnF is defined as ker(Jn F → F) for any sheaf of groups onNilpopR . We then
deduce from Lemma 4.1 the following result.

Lemma 4.2 Let notation be as above. Then

Nn(G[p∞]) = lim−→
ν

Nn(G[pν]) = (NnG)[p∞]

as sheaves on NilpopR .

Proof By Theorem 3.3 the functor Nn is left exact; hence (NnG)[pν] = Nn(G[pν]) and
(NnG)[p∞] := lim−→

ν

(NnG)[pν] = lim−→
ν

Nn(G[pν]).

Further, (NnG)[p∞] = ker((JnG)[p∞] → G[p∞]) = ker(Jn(G[p∞]) → G[p∞]) =
Nn(G[p∞]). ��

We say that a commutative formal R-group scheme is triangular if it admits a finite
filtration by formal subgroup schemes whose successive quotients are isomorphic to ̂Ga. It
is called triangular of level 0 in [8, p. 322]. The formal R-group scheme ̂Wn is triangular.

Lemma 4.3 If H is a triangular formal R-group scheme, then H [p∞] = H as sheaves on
NilpopR .

Proof We proceed by induction on the length m of the filtration. The result is clearly true for
H = ̂Ga since p is nilpotent in any object C ofNilpR . Assume m > 1. Then, H is extension
of ̂Ga by G where G is a triangular formal group scheme with a filtration of length m − 1.
One concludes by induction hypothesis. ��
Moreover, we have the following stronger result.

Theorem 4.4 Assume G is a smooth commutative formal R-group scheme and p ≥ e + 2.
Then, Nn(G[p∞]) = NnG as sheaves on NilpopR .

Proof By Theorem 3.10, the formal R-group scheme NnG is triangular. Hence, the result
follows by Lemmas 4.2 and 4.3. ��
Corollary 4.5 Assume p ≥ e + 2. The exact sequence (1.3) induces an exact sequence of
formal groups

0 → NnG[p∞] → JnG[p∞] → G[p∞] → 0, (4.2)

for any n ≥ 0.

Proof Only the right exactness needs to be proved. Let s be a section ofG such that pms = 0.
It lifts to a section s′ of JnG. Now pms′ comes from a section of NnG and thus is p-power
torsion by the previous theorem. Hence, s′ is p-power torsion. ��

We are now ready to proof the Main Theorem stated in the introduction.

Theorem 4.6 Assume p ≥ e + 2. Given a smooth commutative formal group scheme G of
relative dimension d over R, for any positive integers n the natural morphism JnG → G
gives an exact sequence

0 → (̂Wn−1)
d → JnG[p∞] → G[p∞] → 0

as sheaves on NilpopR .
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Proof This follows directly by applying Theorems 3.10, 4.4 and Corollary 4.5. ��
We can now conclude the study of Examples 3.8.

Examples 4.7 1. AssumeG = ̂Ga.Wehave seen inExample 3.8(1) that N 1
̂Ga = Spf(R〈x ′〉)

is isomorphic to ̂Ga = Spf(R〈x〉) as formal group scheme mapping x to x ′ on algebras.
In particular, for any ν ≥ 1, it is

N 1
̂Ga[pν] ∼= ̂Ga[pν].

This result can be checked directly. Indeed ̂Ga[pν] = Spf(R〈x〉/(pνx)) and hence

J 1̂Ga[pν] = Spf

(

R〈x, x ′〉
(pνx, δ(pνx))

)

N 1
̂Ga[pν] = Spf

(

R〈x ′〉
(pνx ′)

)

,

since (pνx)q + πδ(pνx) = φ(pνx) = pνφ(x) = pν(xq + πx ′). Passing to limit on ν

we get an isomorphism N 1
̂Ga[p∞] ∼= ̂Ga[p∞].

2. Assume G = ̂Gm. We have seen in Example 3.8(2) that if p ≥ e + 2 it is N 1
̂Gm � ̂Ga.

Hence N 1
̂Gm[p∞] � ̂Ga[p∞].
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A Prolongation sequences of algebras

Let for this section R be a flat O-algebra with a fixed π-derivation δ. In particular, it has a
lift of Frobenius. Let u : B → C be a morphism of R-algebras. Recall that if u : B → C is
a morphism of O-algebras, a π -derivation relative to u is a map of sets ∂ : B → C such that
∂(0) = 0 = ∂(1) and for any x, y ∈ B

∂(x + y) = ∂(x) + ∂(y) + u(x)q + u(y)q − u(x + y)q

π
(A.1)

∂(xy) = u(x)q∂(y) + u(y)q∂(x) + π∂(x)∂(y). (A.2)

Associated with ∂ there is a lift of Frobenius (relative to u) � : B → C given by �(x) =
u(x)q + π∂(x) (see [7, §3.1], [2, §1]).

Fix a positive integer r . Let Bn = R[x0, . . . , xn], where for each i ≥ 0, xi denotes the
r -tuple of variables xi,1, . . . , xi,r and denote by u : Bn → Bn+1 the natural inclusions. Fix
a prolongation sequence

B = B0
u,∂−−→ B1

u,∂−−→ B2 → ... (A.3)

i.e., for any n we fix a π -derivation (relative to u) ∂ : Bn → Bn+1 such that

• ∂ is compatible with the π -derivation of R;
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• ∂ ◦ u = u ◦ ∂ (and thus we avoided using subscripts).

The lift of Frobenius is then the homomorphism

� : Bn → Bn+1, xi 
→ xqi + π∂xi ,

where we used a compact notation instead of writing xi, j 
→ xqi, j + π∂xi, j for all i ≤ n and
1 ≤ j ≤ r . Note that we can handle all Bn together by introducing B∞ = R[x0, x1, . . . ] =
⋃

n Bn and again denoting by ∂ the induced π -derivation associated with the identity on B∞
and by � the associated lift of Frobenius.

On the other hand, starting with B = R[x0] we have a prolongation sequence
B = B0

u,δ−→ J1B0
u,δ−→ J2B0 → ... (A.4)

with Jn B = R[x0, x′
0, . . . , x

(n)
0 ] and x(i+1)

0 = δx(i)
0 . Let

� : Jn B → Jn+1B, x0 
→ xq0 + πx′
0

be the corresponding lift of Frobenius and define J∞B = ⋃

n Jn B.
By [2, (2.9)] the restriction on the first componentW (J∞B) → J∞B admits a homomor-

phic section exp such that the following diagram

W (J∞B)
w ∏

i∈N B∞

J∞B

exp
(id,�,�2,... )

(A.5)

commutes, with w the ghost map of ramified Witt vectors. Let exp(x0) = (z0, z1, z2, . . . ) so
that z0 = x0, z1 = x′

0 and for n > 1

�n(x0) = �n(z0) = zq
n

0 + πzq
n−1

1 + · · · + πnzn .

We will show in Theorem 4.9 that if the indeterminates x0, x1, . . . satisfy the analogous
property for �, i.e.,

�n(x0) = xq
n

0 + πxq
n−1

1 + · · · + πnxn, (A.6)

then there is a unique isomorphism between the prolongation sequences (A.3) and (A.4).
We start with a technical result. For brevity, let us define for any n > 1 the following

polynomial in 2n − 2 indeterminates

Hn(x0, . . . , xn−2; y0, . . . , yn−2) :=
n−2
∑

i=0

⎡

⎣

qn−1−i
∑

j=1

π i+ j
(

qn−1−i

j

)

xq(qn−1−i− j)
i y j

i

⎤

⎦

Lemma 4.8 Let B∗ be the prolongation sequence in (A.3) and assume that it satisfies (A.6)
for any n. Then

xn = ∂xn−1 + Hn(x0, . . . , xn−2; ∂x0, . . . , ∂xn−2)

and hence xn − ∂xn−1 ∈ O[x0, . . . , xn−2, ∂x0, . . . , ∂xn−2] with trivial constant term. Simi-
larly, in J∞B it is

zn = δzn−1 + Hn(z0, . . . , zn−2; δz0, . . . , δzn−2)
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Proof The second assertion is [2, Proposition 2.10]. The proof of the first one is similar and
we write below the main steps:

n
∑

i=0

π ixq
n−i

i = �n(x0)

= �(�n−1(x0))

= �

(

n−1
∑

i=0

π ixq
n−1−i

i

)

=
n−1
∑

i=0

π i�(xi )q
ni

=
n−1
∑

i=0

π i (xqi + π∂xi
)qni

=
n−1
∑

i=0

π i

⎡

⎣xq
n−i

i +
qni
∑

j=1

(

qni

j

)

x(qni − j)q
i π j (∂xi ) j

⎤

⎦

=
n−1
∑

i=0

π ixq
n−i

i +
n−1
∑

i=0

⎡

⎣

qni
∑

j=1

π i+ j
(

qni

j

)

x(qni − j)q
i (∂xi ) j

⎤

⎦

with ni = n−1− i . Hence cancelling the common terms on both sides of the above equality
we get

πnxn = πn∂xn−1 +
n−2
∑

i=0

⎡

⎣

qn−1−i
∑

j=1

π i+ j
(

qn−1−i

j

)

xq(qn−1−i− j)
i (∂xi ) j

⎤

⎦

and one can divide by πn . ��

We now prove that prolongation sequences B∗ as above satisfying condition (A.6) for all
n are unique up to unique isomorphism.

Theorem 4.9 Let B∗ be the prolongation sequence in (A.3). Assume that the indeterminates
xi satisfy (A.6) for all n and let zi ∈ J∞R[x0] be the elements defined just below (A.5). Then
we have

(i) The inclusion R[z0, . . . , zn] → Jn R[x0] is an isomorphism for any n.
(ii) For any n ≥ 0 the R-algebra homomorphism hn : Jn R[x0] → Bn, x

(i)
0 
→ ∂ ix0 is an

isomorphism and the following square

R
[

x0, . . . , x
(n)
0

]

(u,δ)

hn

R
[

x0, . . . , x
(n+1)
0

]

hn+1

R [x0, . . . , xn]
(u,∂)

R
[

x0, . . . , xn+1
]

commutes, where u denotes the inclusion map on both levels.
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Proof The first assertion was proved in [2, Lemma 2.20] with zi = Pi (x). Commutativity
of the squares is immediate by definition of hn . We are then left to prove that hn is an
isomorphism. Note hat Jn R[x0] = R[z0, . . . , zn] by point i) and Bn = R[x0, . . . , xn]. If we
prove that hn(zi ) = xi , for all 0 ≤ i ≤ n, the result is clear.

We proceed by strong induction on the subset {(i, n), 0 ≤ i ≤ n} ⊂ N
2 totally ordered as

follows:

(i1, n1) < (i2, n2) if i1 + n1 < i2 + n2 or i1 + n1 = i2 + n2 and i1 < i2.

The picture below illustrates the order.

(0, 4)

(0, 3) (1, 3)

(0, 2) (1, 2) (2, 2)

(0, 1) (1, 1)

(0, 0)

It follows immediately by definition of hn that hn(z0) = hn(x0) = x0 and hn(z1) =
hn(x′

0) = ∂x0 = x1 for all n ≥ 0. Hence the assertion hn(zi ) = xi is clear for i ≤ 1 and
any n, in particular for the base step (0, 0). Assume then i > 1 and that hs(z j ) = x j for
any (0, 0) ≤ ( j, s) < (i, n). By Lemma 4.8, the commutativity of the above square and the
induction step, we have

hn(zi ) = hn (δzi−1 + Hi (z0, . . . , zi−2, δz0, . . . , δzi−2))

= hn(δzi−1) + Hi (hn(z0), . . . , hn(zi−2), hn(δz0), . . . , hn(δzi−2))

= ∂(hn−1(zi−1)) + Hi (x0, . . . , xi−2, ∂hn−1(z0), . . . , ∂hn−1(zi−2))

= ∂xi−1 + Hi (x0, . . . , xi−2, ∂x0, . . . , ∂xi−2)

= xi .

��
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