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Let K be a complete valued field extension of Qp with perfect
residue field. We consider p-adic representations of a finite product
GK,∆ = G∆

K of the absolute Galois group GK of K. This prod-
uct appears as the fundamental group of a product of diamonds.
We develop the corresponding p-adic Hodge theory by constructing
analogues of the classical period rings BdR and BHT, and multivari-
able Sen theory. In particular, we associate to any p-adic represen-
tation V of GK,∆ an integrable p-adic differential system in several
variables Ddif(V ). We prove that this system is trivial if and only
if the representation V is de Rham. Finally, we relate this differ-
ential system to the multivariable overconvergent (φ,Γ)-module of
V constructed by Pal and Zábrádi in [20], along classical Berger’s
construction [5].
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1. Introduction

Let K be a finite extension of Qp, GK its absolute Galois group, and ∆
a finite set. After the work of Scholze and Weinstein [25], [21], the finite
product GK,∆ := G∆

K can be understood as the fundamental group of a
diamond: the product ×∆ SpdQp = SpdQp× · · · × SpdQp (this diamond is
not associated to a perfectoid space). It is then natural to consider p-adic
representations for this fundamental group, viewed as coefficients for the
diamond ×∆ SpdQp. Hereafter, we work in a slightly more general context:
we assume that K is a complete discretely valued extension of Qp with
perfect residue field.

Of course the study of such representations can be considered in the
classical framework of p-adic Hodge theory as developed after the work of
Fontaine (cf [16], [22], [8]), i.e. in terms of period rings and (φ,Γ)-modules.
This second approach has been pursued in recent works by Zábrádi, Pal,
Kedlaya and Carter ([26], [27], [20] and [12]) in terms of multivariable (mul-
tivariate) (φ,Γ)-modules associated to p-adic representations of GK,∆.

In this article, we develop a multivariable Sen theory in this framework,
and construct multivariable (multivariate) p-adic period rings BdR,∆ and
BHT,∆. To any p-adic representation V of GK,∆, we associate an integrable
differential system Ddif(V ) in several (= #∆) variables. We prove that this
system is trivial (i.e. has a full set of solutions) if and only if the GK,∆-
representation V is de Rham. Moreover, we relate the differential module
Ddif(V ) with overconvergent (φ,Γ)-module arising from Pal-Zábrádi theory
(cf [20]).

Before giving a precise description of the content of this article, we make
some remarks and thoughts for future developments. First of all, we note
that the theory we develop here does not fit in the framework of relative
p-adic Hodge theory as studied by Andreatta, Brinon ([1], [2], [3], [9]). In
fact the geometric base for our objects is merely a finite discrete space (cf
Remark 3.23). Secondly, this article should be seen as a first step towards the
introduction of the multivariable periods rings Bcris and Bst, and eventually,
a step in the direction of full analogue of Berger’s results via the theory of
p-adic differential systems in several variables (as was foreseen in [20]).

We now describe more precisely the content of this work. In the second
section we fix some notations and recall useful results. In particular we re-
call classical Sen theory of C-representations, where C is the completion of
an algebraic closure of K, and introduce the completion C∆ of the tensor
product of the #∆-fold tensor product of C over the maximal unramified
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Multivariable de Rham representations 27

subextension of K. In the third section we study free C∆-representations of
finite rank of GK,∆: more precisely, we develop an analogue of Sen theory
in this context. Classically (i.e. when #∆ = 1) Sen theory is an equivalence
of categories between C-representations of GK and K∞-representations of
ΓK = Gal(K∞/K), where K∞ is the cyclotomic extension of K. Our result
in the multivariable context is Theorem 3.28: there is an equivalence of cat-
egories between that of free C∆-representations of finite rank of GK,∆ and
that of free K∆,∞-representation of finite rank of ΓK,∆, where K∆,∞ is the
(non completed) #∆-fold tensor product of K∞ over the maximal unrami-
fied subextension of K. To the latter we can associate generalized Sen oper-
ators (describing the infinitesimal action of ΓK,∆) and develop a Hodge-Tate
theory (cf Corollaries 3.35 and 3.36). In the fourth section we introduce the
period rings BdR,∆ and BHT,∆ and the corresponding de Rham and Hodge-
Tate representations: in particular we show that there are functors DdR and
DHT having the expected properties (Propositions 4.17, 4.18 and 4.19), in
particular that being de Rham implies to be Hodge-Tate. In the fifth section
we prove the multivariable analogue of the work of Fontaine in [16]: namely
Sen theory for BdR,∆-representations. To do this we follow [3]: the central
result (Theorem 5.11) is that the category of free B+

dR,∆-representations

of finite rank of GK,∆ is equivalent to that of free l+dR,∆ = K∆,∞[[tα]]α∈∆-
representations of finite rank of ΓK,∆ (where tα is a p-adic 2iπ correspond-
ing to the action of the factor of index α in GK,∆). By inverting

∏
α∈∆

tα, we

deduce the analogue for BdR,∆ (Theorem 5.12). The upshot is that we can
associate a free module Ddif(V ) with a regular, integrable connection in #∆
variables with coefficients in ldR,∆ = l+dR,∆

[
1
tα

]
α∈∆

to any p-adic represen-
tation V of GK,∆. This is the analogue to that introduced by Fontaine in
[16], and used by Berger in [5]. In particular, we show that a p-adic repre-
sentation V of GK,∆ is de Rham if and only if the associated module with
connection Ddif(V ) is trivial (Proposition 5.18), and relate our construction
to that of overconvergent (φ,Γ)-modules developed by Pal-Zábrádi (cf [20])
and Carter-Kedlaya-Zábrádi (cf [12]) by an analogue of [5, Corollaire 5.8]
(cf Theorem 5.23).

Remark 1.1. There is little doubt that a general Tate-Sen formalism (such
as that of [2]) does exist in the multivariable case, and that could be applied
to families of multivariable representations (as for [6, §3] and [6, Proposition
5.2.1]). This said, we proceed here with Tate-Sen descent by hand (this
already contains most of the necessary ideas).
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2. Notations

Let K be a complete discrete valuation field of characteristic 0, with per-
fect residue field k of characteristic p > 0. Fix an algebraic closure K of K
and let GK = Gal(K/K). Denote by v the valuation on K normalized by
v(p) = 1. It extends uniquely to a valuation of K : let C be the completion
of the latter. If F is a subextension of C/K, we will denote by OF (resp.
mF ) its ring of integers (resp. its maximal ideal). By continuity, the action
of GK extends to C. Fix ε = (ε(n))n∈N a compatible system of primitive
pn-th roots of the unity (i.e. such that ε(0) = 1, ε(1) ̸= 1 and (ε(n+1))p = ε(n)

for all n ∈ N). For each n ∈ N, put Kn = K(ε(n)) and let K∞ =
∞⋃
n=0

Kn

be the cyclotomic extension, and L = K̂∞ its completion with respect to
v. Put HK = Gal(K/K∞) and ΓK = Gal(K∞/K). The cyclotomic charac-

ter χ : ΓK → Z×
p is characterized by γ

(
ε(n)

)
=

(
ε(n)

)χ(γ)
for all γ ∈ ΓK : it

induces an continuous isomorphism between ΓK and an open subgroup of
Z×
p . We still denote χ the composite GK → ΓK

χ
−→ Z×

p . In what follows, co-
homology will always refer to continuous cohomology.

Using ramification estimates, Tate proved in [24] that Hi(HK , C) ={
L if i = 0

0 if i > 0
and constructed the so-called Tate’s normalized traces

(Rn : L→ Kn)n≥nK
(for some integer nK ∈ N), that he used to show

that dimK Hi(ΓK , CHK ) =

{
1 if i ∈ {0, 1}

0 if i > 1
, so that dimK Hi(GK , C) =

{
1 if i ∈ {0, 1}

0 if i > 1
.

Recall that Tate’s normalized trace map Rn : L→ Kn induces the map
x 7→ 1

pm−n TrKm/Kn
(x) on Km for all m ≥ nK .

Proposition 2.1. (cf [24, §3], [6, §3.1 & Proposition 4.1.1] and [11, Propo-
sition 14.1.6]) These maps have the following properties:

(i) Rn is a Kn-linear projector onto Kn: put Xn = Ker(Id−Rn) ⊂ L;

(ii) Rn commutes to the action of ΓK ;

(iii) (∀c2 ∈ R>0) (∀x ∈ L) vp(Rn(x)) ≥ vp(x)− c2 (in particular Rn is con-
tinuous);

(iv) (∀x ∈ L) lim
n→∞

Rn(x) = x;
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(v) for all c3 >
1

p−1 , there exists n
′
K ≥ nK such that for all n ≥ n′

K and γ ∈

ΓK such that vp(1− χ(γ)) ≤ n′
K , then γ − 1 is invertible on Xn, and

for all x ∈ Xn, we have vp((γ − 1)−1(x)) ≥ vp(x)− c3 (in particular,
γ − 1 induces an homeomorphism from Xn to itself).

In what follows, we will use the previous properties with c2 = c3 = 1.
This is certainly not optimal, but for technical reasons, it is much more
convenient to make computations and work with OC∆

/(p) (cf infra) rather
than with quotients by elements of non integral valuation.

Let d ∈ N>0. Based on the work of Tate, Sen showed in [22] that the set
H1(HK ,GLd(C)) is trivial, so that the inflation map

H1(ΓK ,GLd(L))→ H1(GK ,GLd(C))

is bijective. He also proved that the natural map

H1(ΓK ,GLd(K∞))→ H1(ΓK ,GLd(L))

is bijective. This means that if W is a C-representation of GK (cf §3.6),
there exists a K∞-representation W∞ of ΓK such that W ≃ C ⊗K∞

W∞ as
C[GK ]-modules.

As mentioned in the introduction, the first aim of this note is to gener-
alize these results to the case where GK is replaced by a finite power of GK

(along the lines of [20]).

Let ∆ be a finite set, and put δ = #∆. Put GK,∆ =
∏
α∈∆

GK , HK,∆ =
∏
α∈∆

HK , and ΓK,∆ =
∏
α∈∆

ΓK . We have an exact sequence

1→ HK,∆ → GK,∆
χ∆
−−→ ΓK,∆ → 1.

The morphism χ∆ =
∏
α∈∆

χ identifies ΓK,∆ with an open subgroup of (Z×
p )

∆.

Il α ∈ ∆, we denote by GK,α the image of the group homomorphim
ια : GK → GK,∆ that maps g to the element whose component of index α is
g and the others are IdK . The groups HK,α and ΓK,α are defined similarly.
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Notation. (1) If n = (nα)α∈∆ ∈ Z∆, we define a character χ
n
∆ : GK,∆ →

Z×
p by

χ
n
∆

(
(gα)α∈∆

)
=

∏

α∈∆

χ(gα)
nα .

This provides a Zp-representation Zp(n) of GK,∆. More generally, if M is a
Zp-module endowed with an action of GK,∆, we put M(n) = M ⊗Zp

Zp(n),
endowed with the diagonal action of GK,∆.
(2) If F is a closed subextension of C/F0 (where F0 := W(k)

[
1
p

]
), let OF∆

be
the p-adic completion of the tensor product OF ⊗W(k) · · · ⊗W(k) OF (where

the copies of OF are indexed by ∆), and F∆ = OF∆

[
1
p

]
. Observe that when

F/F0 is finite, OF is a free W(k)-module of finite rank, so that the tensor
productOF ⊗W(k) · · · ⊗W(k) OF is p-adically separated and complete, so that
F∆ is nothing but the tensor product F⊗∆ = F ⊗F0

· · · ⊗F0
F (where the

copies of F are indexed by ∆).

Remark 2.2. (1) The ring OF∆
depends on k. This dependence is not

indicated in the notation so as not to make it heavier.
(2) When it is not mentioned, tensor products are taken over W(k).

The group GK∆
naturally acts on OC∆

and C∆. Note also that OL∆
is

naturally a O⊗∆
K∞

-algebra.

3. Multivariable classical Sen theory

3.1. The cohomology of C∆

Lemma 3.2. Let r ∈ N>0. Then the cokernel of OL∆
/(pr)→

H0(HK,∆,OC∆
/(pr)) is killed by m

⊗∆
K∞

. If i > 0, the group

Hi(HK,∆,OC∆
/(pr)) is killed by m

⊗∆
K∞

.

Proof. If ∆′ ⊂ ∆, we denote by OC∆,∆′ the p-adic completion of OC∆′ ⊗W(k)

OL∆\∆′ . In particular, we have OC∆,∅
= OL∆

and OC∆,∆
= OC∆

.

We proceed componentwise: let ∆′ ⊂ ∆ and α ∈ ∆ \∆′, and consider the
action of HK,α on OC∆,∆′∪{α}

/(pr). The topology on the latter is discrete: we
have

Hi(HK,α,OC∆,∆′∪{α}
/(pr)) = lim

−→
F

Hi(HK,α,OF,α ⊗W(k) OC∆\{α},∆′/(p
r))

where F runs among the finite Galois subextensions of K/K∞. Recall
that by [24, §3.2, Proposition 9], we have mK∞

⊂ TrF/K∞
(OF ) for every
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such F . This implies that Hi(HK,α,OF,α ⊗W(k) OC∆\{α},∆′/(p
r)) is killed by

mK∞,α for all F (cf [19, Lemma 3.1]): the same happens, for i > 0, to
Hi(HK,α,OC∆,∆′∪{α}

/(pr)). If x ∈ H0(HK,α,OF,α ⊗W(k) OC∆\{α},∆′/(p
r)) and

η ∈ mK∞,α, let y ∈ OF such that TrF/K∞
(y) = η. Then ηx = TrF/K∞,α(xy) ∈

OC∆,∆′/(p
r), where TrF/K∞,α : OF,α ⊗W(k) OC∆\{α},∆′/(p

r))→ OC∆,∆′/(p
r)

denotes the tensor product of TrF/K∞
on the factor of index α with the

identity on the other factors.

The lemma follows by applying the Hochschild-Serre spectral sequence
finitely many times. □

Theorem 3.3. We have Hi(HK,∆, C∆) =

{
L∆ if i = 0

0 if i > 0
.

Proof. By [18, Proposition 2.7.4], there is a commutative diagram with exact
rows

0 // lim
←−
r

OL∆

(pr)

��

//
∞∏
r=1

OL∆

(pr)

��

//
∞∏
r=1

OL∆

(pr)

��

// lim
←−
r

(1)OL∆

(pr)

��

// 0

0 // lim
←−
r

(
OC∆

(pr)

)HK,∆
//
∞∏
r=1

(
OC∆

(pr)

)HK,∆
//
∞∏
r=1

(
OC∆

(pr)

)HK,∆
// lim
←−
r

(1)
(
OC∆

(pr)

)HK,∆
// 0

The first three vertical maps are injective and the cokernels of those in the
middle are killed by m

⊗∆
K∞

. This implies that the cokernel of the first vertical

map is killed by m
⊗∆
K∞

. This implies that the cokernel of composite map

OL∆
→֒ O

HK,∆

C∆
→ lim
←−
r

(OC∆
/(pr))HK,∆

is killed bym⊗∆
K∞

, showing (by injectivity of the second map) that the cokernel
of

OL∆
→ H0(HK,∆,OC∆

)

is killed by m
⊗∆
K∞

. On the other hand, the inverse system {OL∆
/(pr)}r has

the Mittag-Leffler property: we have lim
←−
r

(1)OL∆
/(pr) = 0. This implies that

lim
←−
r

(1)(OC∆
/(pr))HK,∆ is killed by m

⊗∆
K∞

.
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If i > 0, we have an exact sequence (cf [18, Theorem 2.7.5])

0→ lim
←−
r

(1)Hi−1(HK,∆,OC∆
/(pr))

→ Hi(HK,∆,OC∆
)→ lim
←−
r

Hi(HK,∆,OC∆
/(pr))→ 0.

By Lemma 3.2 (and what precedes when i = 1) the modules
lim
←−
r

(1)Hi−1(HK,∆,OC∆
/(pr)) and lim

←−
r

Hi(HK,∆,OC∆
/(pr)) are killed by m

⊗∆
K∞

,

implying that Hi(H∆,OC∆
) is killed by

(
m

⊗∆
K∞

)2
= m

⊗∆
K∞

.
The proposition follows by inverting p. □

Notation. If ∆′ ⊂ ∆ and n ∈ N, we denote by OL∆,∆′,n
the p-adic comple-

tion of OL∆\∆′ ⊗W(k) OKn,∆′ . In particular, we have OL∆,∅,n
= OKn,∆ and

OL∆,∆,n
= OL∆

. Put L∆,∆′,n = OL∆,∆′,n

[
1
p

]
. Let n ≥ nK : the map Rn in-

duces a continuous map OL →
1
pOKn

. If α ∈ ∆, denote by Rn,α : L∆ →
L∆,∆\{α},n be the map induced by the tensor product of Tate’s normal-
ized trace Rn : L→ Kn (cf [24, §3]) on the factor of index α with the
identity on the other factors (this makes sense by the continuity of Rn).
This defines a continuous L∆,{α},n-linear projector that maps OL∆,∆′,n

into

1
pOL∆,∆′∪{α},n

(cf Proposition 2.1). We also put OL∆,∆′,∞
=

∞⋃
n=0
OL∆,∆′,n

and

L∆,∆′,∞ =
∞⋃
n=0

L∆,∆′,n.

Theorem 3.4. We have

Hi(GK,∆, C∆) ≃ Hi(ΓK,∆, L∆) =

i∧(⊕

α∈∆

K∆ log(χα)
)
.

Proof. The first isomorphism follows from the inflation-restriction exact se-
quence. For all n ∈ N, the map K∆ → Kn,∆ is finite étale, it is enough to
prove the statement replacing K by Kn with n ≥ nK (cf above). Then the
Horschild-Serre spectral sequence reduces the proof of the second isomor-
phism to the equalities

Hi(ΓKn,α
, L∆,∆′,n) =





L∆,∆′∪{α},n if i = 0

L∆,∆′∪{α},n log(χα) if i = 1

0 if i > 1

For the author's personal use only.

For the author's personal use only.



✐

✐

“2-Mazzari” — 2024/8/23 — 2:01 — page 33 — #9
✐

✐

✐

✐

✐

✐

Multivariable de Rham representations 33

for all α ∈ ∆ and ∆′ ⊂ ∆ \ {α}. Working modulo pr as we did in the proof
of Lemma 3.2 and using the maps Rm,α for m ≥ n, we deduce that the
cokernels of the maps

OL∆,∆′,n
/(pr)→ H0(ΓKn,α

, L∆,∆′,n/(p
r))

OL∆,∆′,n
/(pr) log(χα)→ H1(ΓKn,α

, L∆,∆′,n/(p
r))

are killed by p, as do the elements of Hi(ΓKn,α
, L∆,∆′,n/(p

r)) if i > 1. Then
we can pass to the limit arguing as in the proof of Proposition 3.3 to conclude
that the cokernels of the maps

OL∆,∆′,n
→ H0(ΓKn,α

, L∆,∆′,n)

OL∆,∆′,n
log(χα)→ H1(ΓKn,α

, L∆,∆′,n)

and the modules Hi(ΓKn,α
, L∆,∆′,n) with i > 1 are killed by p. The theorem

follows by inverting p. □

Theorem 3.5. If n ∈ N and n ∈ Z∆ \{0}, we have Hi(GK,∆, C∆(n)) = 0
for all i ∈ N.

Proof. Again, using the inflation-restriction exact sequence and the
Horschild-Serre spectral sequence, we are reduced to show that if α ∈ ∆ is
such that nα ̸= 0, then the cohomology groups Hi(ΓK,α, L∆(n)) all vanish.
Let γ ∈ ΓK,α be such that the closure ⟨γ⟩ has finite index in ΓK,α: it is enough
to show that Hi(⟨γα⟩, L∆(n)) = 0 for all i ∈ N, where γα ∈ ΓK,∆ is the ele-
ment whose components are the identity except that of index α, which is γ.

As these cohomology groups are those of the complex L∆(n)
γα−1
−−−→ L∆(n)

(concentrated in degrees 0 and 1), this is equivalent to showing that γα − 1
is bijective on L∆(n), i.e. that it is injective with cokernel killed by pr for
some r ∈ N on OL∆

(n). This follows from the fact that γ − 1 is injective
with cokernel killed by pr for some r ∈ N on OL(nα), since it is bijective
with continuous inverse on L (cf Proposition 2.1 (v)). □

3.6. Sen theory for C∆-representations

We fix terminology and notation that will be used hereafter.

Definition. Let G be a topological group and B a topological ring endowed
with a continuous action of G. A B-representation of G is a topological
module of finite type W endowed with a continuous and semi-linear action of
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G, i.e. such that g(w1 + bw2) = g(w1) + g(b)g(w2) for all b ∈ B, w1, w2 ∈W
and g ∈ G. We say that W is free (resp. projective) of rank d when the
underlying B-module is. We denote by RepB(G) (resp. Repf

B(G), resp.
Reppr

B(G)) the category of B-representations with G-equivariant maps (resp.
the full subcategory of free, resp. projective B-representations of finite rank).

Remark 3.7. If W is a free B-representation of rank d of G, and B is a
basis of W over B, we can denote by Ug ∈ Md(B) the matrix of g acting on
W in the basis B. Then Ug ∈ GLd(B) for all g ∈ G, and the map g 7→ Ug is
a continuous 1-cocycle G→ GLd(B). Conversely, the data of such a cocycle
endows Bd with a B-representation structure. Moreover, changing the basis
precisely amounts to replace the cocycle by a cohomologous one. This means
that isomorphism classes of free B-representations of rank d are in bijection
with the continuous cohomology set H1(G,GLd(B)).

Fix d ∈ N>0. Let H0 ≤ HK be an open normal subgroup, and put H∆ =∏
α∈∆

H0. If ∆
′ ⊂ ∆, let H∆,∆′ be the subgroup of HK,∆ generated by the

subgroups ια(H0) for α ∈ ∆′: we have H∆,∅ = {1} and H∆,∆ = H∆. Note
that although the groups H∆ and H∆,∆′ depend on H0, we do not indicate
this dependency in order not to make the notations too heavy.

Lemma 3.8. (cf [22, Lemma 1] and [2, Lemme 2.1]) Let U : H∆ →
GLd(C∆) be a continuous cocycle. Let ∆′ ⊂ ∆, α ∈ ∆ \∆′ and m ∈ N≥2 be

such that Uh = Id for all h ∈ H∆,∆′ and Uh ∈ Id+pmMd

(
OH∆′

C∆

)
for all h ∈

H∆. Then there exists B0 ∈ Id+pm−1Md

(
OH∆′

C∆

)
such that B−1

0 Uhh(B0) ∈

Id+pm+1Md

(
O

H∆,∆′

C∆

)
for all h ∈ ια(H0).

Proof. By continuity of U , there exists an open normal subgroup H1 ≤ H0

such that Uh ∈ Id+pm+2Md

(
O

H∆,∆′

C∆

)
for all h ∈ ια(H1). Let T be a complete

set of representatives of H0/H1 ≃ ια(H0)/ια(H1): if h ∈ ια(H0) and τ ∈ T ,
there exists unique h′ ∈ ια(H1) and τ ′ ∈ T such that hτ = τ ′h′: we have

Uhτ = Uτ ′h′ = Uτ ′τ ′(Uh′) ∈ Uτ ′ + pm+2Md

(
O

H∆,∆′

C∆

)
.

By [24, §3.2, Proposition 9], we can choose c ∈ OH1

C such that TrH0/H1
(c) :=∑

τ∈T

τ(c) = p. Put

B0 =
1
p

∑

τ∈T

τ(cα)Uτ ∈ Md

(
C

H∆,∆′

∆

)

For the author's personal use only.

For the author's personal use only.



✐

✐

“2-Mazzari” — 2024/8/23 — 2:01 — page 35 — #11
✐

✐

✐

✐

✐

✐

Multivariable de Rham representations 35

(where cα ∈ OC∆
is the image of the tensor 1⊗ · · · ⊗ 1⊗ c⊗ 1⊗ · · · ⊗ 1,

with c on the factor of index α). As Uτ ∈ Id+pmMd

(
O

H∆,∆′

C∆

)
for all τ ∈ T ,

we have B0 ∈ Id+pm−1Md

(
O

H∆,∆′

C∆

)
. This implies in particular that B0 is

invertible in Id+pm−1Md

(
O

H∆,∆′

C∆

)
, with B−1

0 =
∞∑
i=0

(Id−B0)
i. Moreover, if

h ∈ ια(H0), we have

h(B0) =
1
p

∑

τ∈T

hτ(cα)h(Uτ ) =
1
p

∑

τ∈T

hτ(cα)U
−1
h Uhτ

= 1
pU

−1
h

∑

τ∈T

τ ′h′(cα)Uτ ′h′ = 1
pU

−1
h

∑

τ∈T

τ ′(cα)Uτ ′h′ .

As Uτ ′h′ ∈ Uτ ′ + pm+2Md(O
H∆′

C∆
), we have

Uhh(B0) ∈
1
p

∑

τ∈T

τ ′(cα)Uτ ′

︸ ︷︷ ︸
=B0

+pm+1Md

(
O

H∆,∆′

C∆

)

hence B−1
0 Uhh(B0) ∈ Id+pm+1Md

(
O

H∆,∆′

C∆

)
. □

Lemma 3.9. Under the assumptions of Lemma 3.8, there exists Bα ∈

Id+pm−1Md

(
O

H∆,∆′

C∆

)
such that the cocycle U : H∆ → GLd(C∆) defined by

U ′
h := B−1

α Uhh(Bα) is such that U ′
h = Id for all h ∈ H∆,∆′∪{α} and U ′

h ∈

Id+pm−1Md

(
O

H∆,∆′∪{α}

C∆

)
for all h ∈ H∆.

Proof. Lemma 3.8 produces inductively a sequence (Bn)n≥0 in

Id+pm−1Md

(
O

H∆,∆′

C∆

)
and a sequence of cocycles

(
Un : H →

GLd
(
C

H∆,∆′

∆

))
n≥0

such that Bn ∈ Id+pm+n−1Md

(
O

H∆,∆′

C∆

)
, U0 = U ,

Un+1,h = B−1
n Un,hh(Bn) for all h ∈ H∆ and Un,h ∈ Id+pn+mMd

(
O

H∆,∆′

C∆

)

for all h ∈ ια(H0) and n ∈ N. The infinite product Bα = B0B1 · · · con-

verges in Id+pm−1Md

(
O

H∆,∆′

C∆

)
: for h ∈ H∆, put U ′

h = B−1
α Uhh(Bα). By

construction, we have U ′
h = Id for all h ∈ ια(H0).

If h ∈ H∆,∆′ , we have h(Bα) = Bα and Uh = Id hence U ′
h = Id. This shows

that U ′
h = Id for all h ∈ H∆,∆′∪{α}.

If β ∈ ∆ \ (∆′ ∪ {α}), h ∈ ια(H0) and η ∈ ιβ(H0), we have hη = ηh, so
U ′
hh(U

′
η) = U ′

ηη(U
′
h): as U ′

h = Id, we get h(U ′
η) = U ′

η. This implies that

U ′
η ∈ GLd

(
C

H∆,∆∪{α}

∆

)
.

For the author's personal use only.

For the author's personal use only.



✐

✐

“2-Mazzari” — 2024/8/23 — 2:01 — page 36 — #12
✐

✐

✐

✐

✐

✐

36 O. Brinon, B. Chiarellotto, and N. Mazzari

As Bα ∈ Id+pm−1Md

(
O

H∆,∆′

C∆

)
and Uh ∈ Id+pmMd

(
O

H∆,∆′

C∆

)
, we have

U ′
h = B−1

α Uhh(Bα) ∈ Id+pm−1Md

(
O

H∆,∆′

C∆

)

for all h ∈ H. □

Proposition 3.10. (cf [22, Proposition 4], [2, Proposition 2.2])
Let U : H∆ → GLd(C∆) be a continuous cocycle such that Uh ≡ Id
mod pr Md(OC∆

) for all h ∈ H∆, where r ∈ N≥δ+1. Then there exists B ∈
Id+pr−δ Md(OC∆

) such that B−1Uhh(B) = Id for all h ∈ H∆. In particular
U has a trivial image in H1(H∆,GLd(OC∆

)).

Proof. Using Lemma 3.9, this follows inductively from the case ∆′ = ∅ and
m = r, working componentwise. □

Corollary 3.11. (cf [2, Corollaire 2.3]) The maps

lim
−→

H◁HK,∆

H open

H1(HK,∆/H,GLd(C
H
∆ ))→ H1(HK,∆,GLd(C∆))

lim
−→

H◁HK,∆

H open

H1(GK,∆/H,GLd(C
H
∆ ))→ H1(GK,∆,GLd(C∆))

induced by inflation maps are bijective.

Proof. The second statement follows from the first one. Let U : HK,∆ →
GLd(C∆) be a continuous cocycle. By continuity, there exists an open normal
subgroup H ≤ HK,∆ such that Uh ∈ Id+pδ+1Md(OC∆

) for all h ∈ H. Mak-
ing H smaller if necessary, we can assume that H =

∏
α∈∆

H0 where H0 ≤ HK

is an open normal subgroup (note that such subgroups are cofinal among
open normal subgroups ofHK,∆). Proposition 3.10 shows that the cocycle we
started with has a trivial image in H1(H,GLd(C∆)). The inflation-restriction
exact sequence of sets:

{1} → H1
(
HK,∆/H,GLd(C

H
∆ )

)
→ H1

(
HK,∆,GLd(C∆)

)
→ H1

(
H,GLd(C∆)

)

(cf [23, I, §5.8]) shows that U is the induction of a unique class in
H1

(
HK,∆/H,GLd(C

H
∆ )

)
. □

Let H0 ≤ HK be an open normal subgroup. By [4], the field CH0 is the
closure of KH0 . The latter is a finite extension of KHK = K∞. If x is a
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primitive element for KH0/K∞, there exists n ∈ N such that x is algebraic

over Kn: if we put K ′ = Kn(x), then KH0 = K ′
∞, and CH0 = L′ := K̂ ′

∞.
In particular, if H =

∏
α∈∆

H0, we have CH
∆ = L′

∆ by Theorem 3.3. In what

follows, we denote by R′
n,α the generalized normalized Tate traces relative

to K ′ (cf [24, §3] and Proposition 2.1).
Fix ∆′ ⊂ ∆, α ∈ ∆ \∆′ and n ≥ n′

K′ . The topological decomposition
L′ = K ′

n ⊕X ′
n (where X ′

n = Ker(R′
n) gives rise to the topological decompo-

sition

L′
∆,∆′ = L′

∆,∆′∪{α},n ⊕ Ker(R′
n,α).

Moreover, if γ ∈ ΓK,α is such that vp(1− χ(γ)) ≤ n′
K′ , then γ − 1 is invert-

ible on Ker(R′
n,α), and for all x ∈ Ker(R′

n,α) ∩ OL′
∆,∆′

, we have (γ − 1)−1(x) ∈
1
pOL′

∆,∆′
(cf Proposition 2.1).

Lemma 3.12. (cf [22, Proposition 3], [6, Lemme 3.2.5]). Let
γ ∈ ΓK′,α such that vp(1− χ(γ)) ≤ n. Assume B ∈ GLd(L

′
∆,∆′) and

V1, V2 ∈ Id+p2Md

(
OL′

∆,∆′∪{α},n

)
are such that γ(B) = V1BV2. Then

B ∈ GLd(L
′
∆,∆′∪{α},n).

Proof. Put Z = B −R′
n,α(B) ∈ Md(L

′
∆,∆′): as Rn,α is L′

∆,∆′∪{α},n-linear and

commutes with the action of ΓK′,α, we have γ(Z) = V1ZV2, hence

γ(Z)− Z = V1ZV2 − Z = (V1 − Id)Z + V1Z(V2 − Id)− (V1 − Id)Z(V2 − Id).

If Z ∈ paMd

(
OL′

∆,∆′

)
, this implies that (γ − 1)(Z) ∈ pa+2Md

(
OL′

∆,∆′

)
. As

Z has entries in Ker(R′
n,α), this implies that Z ∈ pa+1Md

(
OL′

∆,∆′

)
. This

shows that Z = 0, i.e. that B has entries in L′
∆,∆′∪{α},n. □

Lemma 3.13. (cf [22, Lemma 3], [6, Lemme 3.2.3]). Let a, b ∈ N be
such that b ≥ a > 2 and γ ∈ ΓK′,α such that vp(1− χ(γ)) ≤ n. Assume U =
Id+paU1 + pbU2 with U1 ∈ Md

(
OL′

∆,∆′∪{α},n

)
and U2 ∈ Md

(
OL′

∆,∆′

)
. Then

there exists V ∈ Md

(
OL′

∆,∆′

)
such that M−1Uγ(M) = Id+paV1 + pb+1V2

with V1 ∈ Md

(
OL′

∆,∆′∪{α},n

)
and V2 ∈ Md

(
OL′

∆,∆′

)
, where M = Id+pb−1V .

Proof. We can write U2 = R′
n,α(U2) +

1
p(1− γ)(V ), where V ∈ Md

(
OL′

∆,∆′

)

has entries in Ker(R′
n,α). Then we have M−1 =

∞∑
j=0

pj(b−1)V j ∈ Id−p
b−1V +

pb+1Md

(
OL′

∆,∆′

)
(because 2(b− 1) ≥ b+ 1 since b ≥ 3 by hypothesis), so
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that

M−1Uγ(M) ∈ (Id−p
b−1V )U(Id+pb−1γ(V )) + pb+1Md

(
OL′

∆,∆′

)

∈ U − pb−1(V U − Uγ(V )) + pb+1Md

(
OL′

∆,∆′

)
.

We have U ∈ Id+p2Md

(
OL′

∆,∆′

)
(because b ≥ a > 2), so that V U −

Uγ(V ) ∈ (1− γ)(V ) + p2Md

(
OL′

∆,∆′

)
. This implies that

M−1Uγ(M) ∈ U − pb−1(1− γ)(V ) + pb+1Md

(
OL′

∆,∆′

)

∈ Id+paU1 + pb
(
R′

n,α(U2) +
1
p(1− γ)(V )

)

− pb−1(1− γ)(V ) + pb+1Md

(
OL′

∆,∆′

)

∈ Id+paV1 + pb+1Md

(
OL′

∆,∆′

)

with V1 = U1 + pb−aR′
n,α(U2) ∈ Md

(
OL′

∆,∆′∪{α},n

)
. □

Corollary 3.14. (cf [22, Proposition 6], [6, Corollaire 3.2.4]). Let
a > 2, U ∈ Id+paMd

(
OL′

∆,∆′

)
and γ ∈ ΓK′,α such that vp(1− χ(γ)) ≤

n. Then there exists M ∈ Id+pa−1Md

(
OL′

∆,∆′

)
such that M−1Uγ(M) ∈

Id+paMd

(
OL′

∆,∆′∪{α},n

)
.

Proof. Using the previous lemma inductively, we can construct a sequence
of matrices (Mb)b≥a such that Mb ∈ Id+pb−1Md

(
OL′

∆,∆′

)
and

(MaMa+1 · · ·Mb)
−1Uγ(MaMa+1 · · ·Mb)

∈ Id+paMd

(
OL′

∆,∆′∪{α},n

)
+ pb+1Md

(
OL′

∆,∆′

)

for all b ≥ a. The infinite product
∞∏
b=a

Mb converges in Id+pa−1Md

(
OL′

∆,∆′

)

and has the required property. □

By definition, we have inclusions

K ′
n,∆ = L′

∆,∅,n ⊂ L′
∆,∆′,n ⊂ L′

∆,∆,n = L′
∆

for all n ∈ N, hence inclusions

K ′
∆,∞ :=

∞⋃

n=0

K ′
n,∆ = L′

∆,∅,∞ ⊂ L′
∆,∆′,∞ ⊂ L′

∆
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for all ∆′ ⊂ ∆. We put OK′
∆,∞

=
∞⋃
n=0
OK′

n,∆
.

Corollary 3.15. (cf [6, Proposition 3.2.6]). Let U : ΓK′,∆ →
Id+p2Md

(
OL′

∆,∆′,∞

)
be a continuous cocycle. Then there ex-

ists M ∈ Id+pMd

(
OL′

∆,∆′,∞

)
such that for all g ∈ ΓK′,∆, we have

M−1Ugg(M) ∈ Id+p2Md

(
OK′

∆,∆′∪{α},∞

)
.

Proof. As ΓK′,∆ is topologically generated by finitely many elements, there
exists n ≥ n′

K′ such that Ug ∈ Id+p2Md

(
OL′

∆,∆′,n

)
for all g ∈ ΓK′,∆. Let

γ ∈ ΓK′,α be an element of infinite order. Enlarging n if necessary, we
may assume that vp(1− χ(γ)) ≤ n. By Corollary 3.14, there exists M ∈
Id+pMd

(
OL′

∆,∆′,n

)
such that M−1Uγγ0(M) ∈ Id+p2Md

(
OL′

∆,∆′∪{α},n

)
.

For all g ∈ ΓK′,∆, put U
′
g = M−1Ugg(M): this defines a cocycle U ′ : ΓK′,∆ →

Id+p2Md

(
OL′

∆,∆′,n

)
which is cohomologous to U , and such that U ′

γ ∈

Id+p2Md

(
OL′

∆,∆′∪{α},n

)
. Let g ∈ ΓK′,∆. As ΓK′,∆ is commutative, we have

γg = gγ hence U ′
γγ(U

′
g) = U ′

gg(U
′
γ) i.e. γ(U ′

g) = U ′−1
γ U ′

gg(U
′
γ). Lemma 3.12

applied with V1 = U ′−1
γ and V2 = g(U ′

γ) (here he use the fact that L∆,∆′∪{α},n

is stable by g, which follows form the commutativity of ΓK′,∆) im-
plies that U ′

g has coefficients in L′
∆,∆′∪{α},n, so that U ′ has values in

Id+p2Md

(
OL′

∆,∆′∪{α},n

)
. □

Corollary 3.16. Let U : ΓK′,∆ → Id+p2Md

(
OL′

∆

)
be a continuous co-

cycle. Then there exists B ∈ Id+pMd

(
OL′

∆

)
such that B−1Ugg(B) ∈

Id+p2Md

(
OK′

∆,∞

)
for all g ∈ ΓK′,∆.

Proof. This follows by using Corollary 3.15 finitely many times. □

Proposition 3.17. (cf [6, Proposition 3.2.6]). Let U : GK,∆ → GLg(C∆)
be a continuous cocycle. There exist a finite subextension K ′ of K/K,
a matrix B ∈ GLd(C∆) such that B−1Ugg(B) = Id for all g ∈ HK′,∆ and
B−1Ugg(B) ∈ GLd

(
OK′

∆

)
for all g ∈ GK′,∆.

Proof. By continuity, there exists a finite Galois subextension K ′ of K/K
such that, for all g ∈ GK′,∆, Ug ∈ Id+p2+δ Md

(
OC∆

)
. Proposition 3.10

applied with H0 = HK′ and r = 2 + δ implies the existence of B1 ∈
Id+p2Md

(
OC∆

)
such that B−1

1 Uhh(B1) = Id for all h ∈ HK′,∆. By construc-
tion, we have U ′

g := B−1
1 Ugg(B1) = Id+p2Md

(
OC∆

)
for all g ∈ GK′,∆. Let

g ∈ GK,∆ and h ∈ HK′,∆. As HK′,∆ ◁GK,∆, we have h′ = g−1hg ∈ HK′,∆,
so that U ′

hh(U
′
g) = U ′

gg(U
′
h′) i.e. h(U ′

g) = U ′
g (since U ′

h = U ′
h′ = Id). As this
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holds for all h ∈ HK′,∆, this implies that Ug ∈ Md

(
C

HK′,∆

∆

)
= Md(L

′
∆) (cf

Theorem 3.3). This shows that in fact, we have U ′
g ∈ GLd(OL′

∆

)
for all

g ∈ GK,∆, and that, in particular, the restriction of U ′ defines a continu-
ous cocycle U ′ : ΓK′,∆ → Id+p2Md

(
OL′

∆

)
⊂ GLd

(
OL′

∆

)
.

By Corollary 3.16, there exist B2 ∈ Id+pMd

(
OL′

∆

)
and n ∈ N such that,

for all g ∈ ΓK′,∆, B
−1
2 U ′

gg(B2) ∈ Id+p2Md

(
OK′

n,∆

)
. Replacing K ′ by K ′

n,
we may assume that K ′

n = K ′. Put B = B2B1 ∈ GLd(C∆) and U ′′
g =

B−1Ugg(B) for all g ∈ GK,∆. By construction, we have U ′′
g = Id for all

g ∈ HK′,∆ and U ′′
g ∈ Id+p2Md

(
OK′

∆

)
for all g ∈ GK′,∆.

Let g ∈ GK,∆ and γ ∈ GK′,∆. As K ′/K is Galois, we have GK′,∆ ◁GK,∆,
so that γ′ := g−1γg ∈ GK′,∆. By the cocycle condition, we have γ(Ug) =
U−1
γ Ugg(Uγ′). A repeated application of Lemma 3.12 (for each α ∈ ∆) thus

implies that Ug ∈ GLd
(
OK′

∆

)
. □

Corollary 3.18. (cf [2, Théorème 3.1]) The natural map

lim
−→
K′

H1(GK,∆/HK′,∆,GLd(K
′
∆))→ H1(GK,∆,GLd(C∆))

(where K ′ runs among the finite Galois subextensions of K/K) induced by
inflation maps is bijective.

Proof. Surjectivity is nothing but Proposition 3.17: it remains to
prove the injectivity. Let K ′ be a finite subextension of K/K and
U,U ′ : GK,∆/HK′,∆ → GLg(K

′
∆) be two continuous cocycles that induce

cohomologous cocycles GK,∆ → GLd(C∆). This means that there exists
B ∈ GLd(C∆) such that U ′

g = B−1Ugg(B) for all g ∈ GK,∆. By continu-
ity, we may enlarge K ′ and assume that Ug, U

′
g ∈ Id+p2Md(OK′,∆) for all

g ∈ GK′,∆. If g ∈ HK′,∆, we have Ug, U
′
g = Id, so that g(B) = B: this shows

that B ∈ GLd(L
′
∆), where L′ = CHK′ . Then we have γ(B) = U−1

γ BU ′
γ for

all γ ∈ GK,∆/HK′,∆. Applying Lemma 3.12 finitely many times (for each
α ∈ ∆) shows that B ∈ GLd(K

′
∆,∞). Replacing K ′ by K ′

n for n ∈ N large
enough implies that U and U ′ are cohomologous as cocycles with values in
GLd(K

′
∆), proving the injectivity. □

We now refine the previous statement by translating it in terms of C∆-
representations of GK,∆.

Theorem 3.19. (cf [22, Theorem 3]). Let W be a free C∆-representation
of GK,∆ of rank d. Then there exists a free K∆,∞-representation Y of ΓK,∆

of rank d and such that W ≃ C∆ ⊗K∆,∞
Y (as C∆-representations of GK,∆).
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Proof. Corollary 3.18 implies that there exists a finite Galois subextension
K ′ of K/K and a free K ′

∆-representation of rank d of GK,∆/HK′,∆ such
that W ≃ C∆ ⊗K′

∆
W ′ as C∆-representations of GK,∆. Enlarging K ′ if nec-

essary, we may furthermore assume that K ′/F0 is Galois. By restriction, the
group Gal(K ′

∞/K∞) identifies with a subgroup G = Gal(K ′/K ′ ∩K∞) of
Gal(K ′/F0). Put F = K ′G = K ′ ∩K∞. Note that G is the kernel of the map
Gal(K ′/F0)→ ΓK induced by the restriction to K∞: this implies that F/F0

is Galois. If ∆′ ⊂ ∆ and α ∈ ∆ \∆′, the finite Galois extension F → K ′

induces a finite étale extension

F∆′∪{α} ⊗K K ′
∆\(∆′∪{α}) → F∆′ ⊗K K ′

∆\∆′

with group Gα. By Galois descent, if Wα is a rank d projective F∆′ ⊗K

K ′
∆\∆′-representation of Gα, then WGα

α is a rank d projective F∆′∪{α} ⊗K

K ′
∆\(∆′∪{α})-module of finite rank and the natural map

(F∆′ ⊗K K ′
∆\∆′)⊗F∆′∪{α}⊗KK′

∆\(∆′∪{α})
WGα

α →Wα

is an isomorphism. Starting from W ′ and applying what precedes for each
α ∈ ∆ implies that W ′G∆ is a projective F∆-module of rank d, and that the
map

K ′
∆ ⊗F∆

W ′G∆ →W ′

is an isomorphism. As F/F0 is finite and Galois, F∆ is a finite product of
copies of F (indexed by Gal(F/F0)

δ−1), so that a projective F∆-module is
necessarily free of rank d (the dimension over F of all its localizations is
d, since it is free of rank d after tensoring with C∆). Then we have GK,∆-
equivariant isomorphisms

W ≃ C∆ ⊗K′
∆
W ′ ≃ C∆ ⊗F∆

W ′G∆ ≃ C∆ ⊗K∆,∞
Y

where Y = K∆,∞ ⊗F∆
W ′G∆ is a K∆,∞-representation of ΓK,∞ which is free

of rank d. □

Corollary 3.20. If W is a C∆-representation of GK,∆, then WHK,∆ is a
free L∆-representation of ΓK,∆ of rank d, and the natural map

C∆ ⊗L∆
WHK,∆ →W

is a GK,∆-equivariant isomorphism.
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Proof. By Theorem 3.19, we may assume that W = C∆ ⊗K∞,∆
Y where Y ia

a free K∞,∆-representation of ΓK,∆ of rank d. Then WHK,∆ = L∆ ⊗K∞,∆
Y

is a free L∆-representation of ΓK,∆ of rank d, and the natural map C∆ ⊗L∆

WHK,∆ →W is a GK,∆-equivariant isomorphism. □

Corollary 3.21. (cf [22, Theorem 1]) The natural map

H1(ΓK,∆,GLd(K∆,∞))→ H1(GK,∆,GLd(C∆))

is bijective.

Proof. Here again the surjectivity follows from Theorem 3.19, and the injec-
tivity is proved exactly as in the proof of Corollary 3.18. □

Proposition 3.22. If E ⊂ L∆ is a sub-K∆-module of finite type stable by
ΓK,∆, then E ⊂ K∆,∞ (more precisely, there exists n ∈ N such that E ⊂
Kn,∆).

Proof. Enlarging K, we may assume that K/F0 is Galois, with group GK/F0
.

The map

K ⊗F0
K → KGK/F0

x⊗ y 7→ (xσ(y))σ∈GK/F0

is an isomorphism of K-algebras (with the left structure on the LHS, and
the diagonal structure on the RHS). Fix an ordering α1 < α2 < · · · < αδ of
∆: by induction, what precedes provides an isomorphism of K-algebras

ι : K∆
∼
→KGδ−1

K/F0

where the component of index σ = (σ2, . . . , σδ) ∈ Gδ−1
K/F0

of ι(x1 ⊗ · · · ⊗ xδ)
is given by

x1σ2(x2σ3(x3 · · ·xδ−1σδ(xδ) · · · )

(here the K-algebra structure on the LHS is through the factor of index
α1 and that on the RHS is the diagonal one). For each σ ∈ Gδ−1

K/F0
, we

thus have a surjective morphism of K-algebras ισ : K∆ → K correspond-
ing to the projection onto the factor of index σ. Similarly, we have an

injective map ι∞ : K∆,∞ → K
Gδ−1

K∞/F0
∞ , that extends into an injective map
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ι̂∞ : L∆ → LGδ−1
K∞/F0 (because ι∞ maps OK∆,∞

into O
Gδ−1

K∞/F0

L which is p-

adically separated and complete). Let σ ∈ Gδ−1
K/F0

: the map ισ is a local-
ization, so that the natural map

ι̂∞,σ : Kισ⊗K∆
L∆ →

∏

γ∈Gδ−1
K∞/F0

γ 7→σ

L

is injective. Note that if g = (g1, . . . , gδ) ∈ ΓK,∆ and x1, . . . , xδ ∈ K∞, we
have

ι∞
(
g(x1 ⊗ · · · ⊗ xδ)

)
= ι∞

(
g1(x1)⊗ · · · ⊗ gδ(xδ)

)

=
(
g1(x1)γ2(g2(x2)γ3(g3(x3) · · · gδ−1(xδ−1)γδ(gδ(xδ))) · · · )

)
γ∈Gδ−1

K∞/F0

=
(
g1

(
x1

(
g−1
1 γ2g2

)(
x2

(
g−1
2 γ3g3

)(
x3 · · ·

(
g−1
δ−1γδgδ

)
(xδ

)
· · ·

))))
γ∈Gδ−1

K∞/F0

.

This shows that ι̂∞,σ is ΓK,∆-equivariant when the
∏

γ∈Gδ−1
K∞/F0

γ 7→σ

L is equipped

with the action given by

g · (xγ)γ =
(
g1(xg·γ)

)
γ
,

where g · γ = (g−1
1 γ2g2, g

−1
2 γ3g3, . . . , g

−1
δ−1γδgδ) ∈ Gδ−1

K/F0
if γ = (γ2, . . . , γδ)

(note that this indeed maps to σ if γ does).
By hypothesis, the localization Eσ := Kισ⊗K∆

E is a finite dimensional
sub-K-vector space of Kισ⊗K∆

L∆ that is stable under the action of ΓK,∆.

If γ
0
= (γ2, . . . , γδ) ∈ Gδ−1

K∞/F0
, the projection prγ

0

◦ ι̂∞,σ : Kισ⊗K∆
L∆ → L

onto the factor of index γ
0
maps Eσ onto a finite dimensional sub-K-vector

space Eγ
0
of L. Moreover, if g ∈ ΓK , define the element g = (g1, . . . , gδ) ∈

ΓK,∆ by g1 = g and gi = γ−1
i gi−1γi for all i ∈ {2, . . . , δ} (we have indeed

γ−1
i gi−1γi ∈ ΓK since ΓK is normal in GK∞/F0

because K/F0 is Galois). By
construction, we have g · γ

0
= γ

0
, and the component of index γ

0
in

g
(
(xγ)γ

)

is precisely g(xγ
0
) for all (xγ)γ ∈

∏
γ∈Gδ−1

K∞/F0
γ 7→σ

L. As Eσ is stable under ΓK,∆,

this implies in particular that Eγ
0
is stable under ΓK . By [22, Proposition 3],

this implies that there exists an integer nσ such that Eγ
0
⊂ Knσ

.
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As Γδ−1
K ⊂ ΓK,∆ acts transitively on the set of those elements γ ∈

Gδ−1
K∞/F0

mapping to σ (by the action given by (g2, . . . , gδ) · (γ2, . . . , γδ) =

(γ2g2, g
−1
2 γ3g3, . . . , g

−1
δ−1γδgδ)), and as g ·

(
(xγ)γ

)
=

(
xg·γ

)
γ

when g1 =

IdK∞
, the stability of Eσ under ΓK,∆ implies that the projection prγ ◦

ι̂∞,σ : Kισ⊗K∆
L∆ → L onto the factor of index γ maps Eσ into Knσ

for

all γ ∈ Gδ−1
K∞/F0

mapping to σ.

The injectivity and equivariance of ι̂∞,σ imply that Eσ is fixed by ΓKnσ ,∆.
Now if we call n the maximum of those nσ (there are finitely many of these,
since Gδ−1

K/F0
is finite), this shows that all the localizations Kισ⊗K∆

E are
invariants under ΓKn,∆: the same holds for E . □

Remark 3.23. The previous proposition shows that our geometric setting
is that of a finite discrete space, corresponding to a finite product of fields:
there are finitely many finite extensions Ei/K such that K∆ ≃

∏
i∈I

Ei. The

data of a K∆-module M is thus equivalent to that of the collection of its
localizations (Ei ×K∆

M)i∈I . In particular, the K∆-module M is free of rank
d if and only if dimEi

(Ei ×K∆
M) = d for all i ∈ I.

Definition. Let X be a L∆-representation of ΓK,∆. An element x ∈ X is
said to be K∆-finite if its orbit under ΓK,∆ generates a K∆-module of finite
type in X. We denote by Xf the subset of elements elements that K∆-finite
in X. In other words, Xf is the union of all sub-K∆-modules of X that are
of finite type and stable by ΓK,∆. Note that Xf is a sub-K∆-module of X,
and that it is stable under ΓK,∆.

Corollary 3.24. If X ∈ RepL∆
(ΓK,∆) is free of rank d, then Xf is a free

K∆,∞-module of rank d, and the natural map

L∆ ⊗K∆,∞
Xf → X

is a ΓK,∆-equivariant isomorphism.

Proof. By Corollary 3.21, we can find a L∆-basis B = (e1, . . . , ed) of X such

that Y :=
d⊕

i=1
K∆,∞ei is stable by ΓK,∆ in X. By construction, the natural

map L∆ ⊗K∆,∞
Y → X is a ΓK,∆-equivariant isomorphism. We have to show

that Y = Xf . The action of ΓK,∆ on Y is described in the basis B by a
continuous cocycle U : ΓK,∆ → GLd(K∆,∞): there exists m ∈ N such that U

has values in Km,∆. This implies that Ym :=
d⊕

i=1
Km,∆ei is stable under the
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action of ΓK,∆, so that Ym ⊂ Xf . As Xf is a K∞,∆-module, this implies that

Y ⊂ Xf . Conversely, let x ∈ Xf . As x ∈ X, we can write uniquely x =
d∑

i=1
λiei

where λ1, . . . , λd ∈ L∆. Let E be the sub-Km,∆-module of L∆ generated by
the coordinates in B of all the elements g(x) with g ∈ ΓK,∆. As x ∈ Xf ,
the Km,∆-module E is of finite type, and stable under the action of ΓK,∆

by definition (because the coordinates of g(x) in B are given by the matrix

product Ug

(
g(λ1)...
g(λd)

)
and Ug ∈ GLd(Km,∆)). By Proposition 3.22, we have

E ⊂ K∞,∆, hence x ∈ Y . □

Proposition 3.25. Let K ′ be a finite extension of K in K . Recall that
L = K̂∞ and put L′ = K̂ ′

∞. The extensions K∆,∞ → K ′
∆,∞ and L∆ → L′

∆

are finite étale, and Galois with group Gal(K ′
∞/K∞)∆ if K ′

∞/K∞ is Galois.
Moreover, we have K ′

∆,∞ ⊗K∆,∞
L∆

∼
→L′

∆.

Proof. • If ∆′ ⊂ ∆ and α ∈ ∆ \∆′, the finite separable extension Kn → K ′
n

tensored with K ′⊗∆′

n ⊗F K
⊗(∆\(∆′∪{α}))
n over F provides a finite étale map

K ′(∆∪{α})
n ⊗F K⊗(∆\(∆′∪{α}))

n

for all n ∈ N. the latter is Galois with group Gal(K ′
∞/K∞) when n≫ 0 if

K ′
∞/K∞ is Galois. The composition of all these maps thus provides a finite

étale map

K⊗∆
n → K ′⊗∆

n

which is Galois with group Gal(K ′
∞/K∞)∆ when n≫ 0 if K ′

∞/K∞ is Galois.
Put together, this shows that the map K∆,∞ → K ′

∆,∞ is finite étale, and

Galois with group Gal(K ′
∞/K∞)∆ if K ′

∞/K∞ is Galois.
• There exists n0 ∈ N such that n ≥ n0 ⇒ [K ′

n : Kn] = [K ′
∞ : K∞], so that

K ′
n ⊗Kn

K∞
∼
→K ′

∞. By [1, Corollary 3.10], making n0 larger, we may assume
that the cokernel of the map OK′

n
⊗OKn

OK∞
→ OK′

∞
is killed by p whenever

n ≥ n0 (we could replace p by any element on positive valuation in OK∞
,

but we will not use this). This implies that for n ≥ n0, there is an exact
sequence

0→ O⊗∆
K′

n
⊗O⊗∆

Kn

O⊗∆
K∞
→ O⊗∆

K′
∞
→ T → 0

where T is a group killed by p. If r ∈ N>0, we deduce the exact sequence

TorZ1 (Z /pr Z,O⊗∆
K′

∞
)→ TorZ1 (Z /pr Z, T )

→ O⊗∆
K′

n
⊗O⊗∆

Kn

O⊗∆
K∞

/(pr)→ O⊗∆
K′

∞
/(pr)→ T/(pr)→ 0.
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As O⊗∆
K′

∞
has no p-torsion (resp. T is killed by p), we have

TorZ1 (Z /pr Z,O⊗∆
K′

∞
) = {0} (resp. T/(pr) = T and TorZ1 (Z /pr Z, T ) ≃ T ),

hence an exact sequence

0→ T → O⊗∆
K′

n
⊗O⊗∆

Kn

O⊗∆
K∞

/(pr)
fr
−→ O⊗∆

K′
∞
/(pr)→ T → 0.

It splits into two exact sequences

0→ T → O⊗∆
K′

n
⊗O⊗∆

Kn

O⊗∆
K∞

/(pr)→ Im(fr)→ 0

0→ Im(fr)→ O
⊗∆
K′

∞
/(pr)→ T → 0.

Passing to inverse limits gives exact sequences

0→ T → lim
←−
r

O⊗∆
K′

n
⊗O⊗∆

Kn

O⊗∆
K∞

/(pr)→ lim
←−
r

Im(fr)→ 0

0→ lim
←−
r

Im(fr)→ OL′
∆
→ T

(the exactness on the right in the first sequence follows from the fact that
the constant inverse system (T )r≥1 has the Mittag-Leffler property). As OK′

n

is free over OKn
, so is O⊗∆

K′
n

over O⊗∆
Kn

: this implies that

lim
←−
r

O⊗∆
K′

n
⊗O⊗∆

Kn

O⊗∆
K∞

/(pr) ≃ O⊗∆
K′

n
⊗O⊗∆

Kn

lim
←−
r

O⊗∆
K∞

/(pr) = O⊗∆
K′

n
⊗O⊗∆

Kn

OL∆
.

The previous exact sequences thus provide an exact sequence

0→ T → O⊗∆
K′

n
⊗O⊗∆

Kn

OL∆
→ OL′

∆
→ T.

Inverting p gives an isomorphism

K ′⊗∆
n ⊗K⊗∆

n
L∆

∼
→L′

∆,

hence an isomorphism K ′
∆,∞ ⊗K∆,∞

L∆
∼
→L′

∆, showing the last assertion.
The statements on the map L∆ → L′

∆ follow. □

Proposition 3.26. The K∆,∞-algebra L∆ is faithfully flat.

Proof. • Assume that K/F0 is Galois: so is Kn/F0 for all n ∈ N. Recall that

the choice of an ordering on ∆ provides an isomorphism Kn,∆ ≃ K
Gδ−1

Kn/F0
n
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(where GKn/F0
= Gal(Kn/F0)): the localizations of Kn,∆ at maximal ide-

als are given by the projections ισ : Kn,∆ → Kn indexed by the elements
σ ∈ Gδ−1

Kn/F0
. The corresponding localization Kn → Kn,ισ⊗Kn,∆

L∆ is flat

(because Kn is a field!): this proves that the map Kn,∆ → L∆ is faithfully
flat.
Let I ⊂ K∆,∞ be a nonzero ideal. For each n ∈ N, put In = I ∩Kn,∆ (where
Kn,∆ is seen as a subring of K∆,∞). By flatness, the natural map In ⊗Kn,∆

L∆ → L∆ is injective for all n ∈ N. The commutative diagram

In ⊗Kn,∆
L∆ � y

++
in

��
L∆

In+1 ⊗Kn+1,∆
L∆

%
�

33

thus implies that the natural map in : In ⊗Kn,∆
L∆ → In+1 ⊗Kn+1,∆

L∆ is
injective. Passing to the inductive limit, this implies that the following com-
posite of the natural maps

lim
−→
n

(In ⊗Kn,∆
L∆)→ I ⊗K∆,∞

L∆ → L∆

is injective. As the first map is surjective, it is an isomorphism, so that the
natural map I ⊗K∆,∞

L∆ → L∆ is injective. This proves the flatness in this
case.
As seen in the proof of Proposition 3.22, if σ ∈ Gδ−1

K/F0
, there is an injection

ι̂∞,σ : Kισ⊗K∆
L∆ →

∏
γ∈Gδ−1

K∞/F0
γ 7→σ

L. It inserts in the commutative diagram

Kισ⊗K∆
K∆,∞

//
� _

��

∏
γ∈Gδ−1

K∞/F0
γ 7→σ

K∞

� _

��
Kισ⊗K∆

L∆
ι̂∞,σ //

∏
γ∈Gδ−1

K∞/F0
γ 7→σ

L

.

As the top horizontal map is faithful (because its components are precisely
the localizations of Kισ⊗K∆

K∆,∞ at its maximal ideals), and as the right
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vertical map is faithful, so is the composite

Kισ⊗K∆
K∆,∞ → Kισ⊗K∆

L∆ →
∏

γ∈Gδ−1
K∞/F0

γ 7→σ

L

hence Kισ⊗K∆
K∆,∞ → Kισ⊗K∆

L∆ is faithful as well. As this holds for all

σ ∈ Gδ−1
K/F0

, this implies that K∆,∞ → L∆ is faithful.

• In general, let K ′ ⊂ K be the Galois closure of K/F0. By what precedes,
the map K ′

∆,∞ → L′
∆ is faithfully flat. Moreover, K ′

∆,∞ is free as a K∆,∞-
module, so thatK∆,∞ → L′

∆ is flat as well. Let I ⊂ K∆,∞ be a nonzero ideal.
The natural map I ⊗K∆,∞

L′
∆ → L′

∆ is thus injective. On the other hand,

L′
∆ is free over L∆ since K ′

∆,∞ is over K∆,∞ and K ′
∆,∞ ⊗K∆,∞

L∆
∼
→L′

∆

by Proposition 3.25. This implies that I ⊗K∆,∞
L∆ → I ⊗K∆,∞

L′
∆ is injec-

tive, so that the composite map I ⊗K∆,∞
L∆ → L′

∆ is injective. As it factors
through L∆, this implies that I ⊗K∆,∞

L∆ → L∆ is injective, showing the
flatness of K∆,∞ → L∆.
If M is a K∆,∞-module such that M ⊗K∆,∞

L∆ = 0, we have

(M ⊗K∆,∞
K ′

∆,∞)⊗K′
∆,∞

L′
∆ ≃M ⊗K∆,∞

L′
∆ ≃ (M ⊗K∆,∞

L∆)⊗L∆
L′
∆ = 0

so that the faithfulness of L′
∆ over K ′

∆,∞ implies that M ⊗K∆,∞
K ′

∆,∞ = 0,
hence M = 0 since K ′

∆,∞ is free over K∆,∞. □

Corollary 3.27. (cf [3, Lemme 3.15]) Let X1 and X2 be free L∆-
representations of finite rank of ΓK,∆. The natural maps

HomK∞,∆
(X1,f , X2,f)→ HomL∆

(X1, X2)f

HomRepK∞,∆
(ΓK,∆)(X1,f , X2,f)→ HomRepL∆

(ΓK,∆)(X1, X2)

Ext1RepK∞,∆
(ΓK,∆)(X1,f , X2,f)→ Ext1RepL∆

(ΓK,∆)(X1, X2)

are bijective.

Proof. By Corollary 3.24, we have L∆ ⊗K∆,∞
X1,f

∼
→X1 and L∆ ⊗K∞,∆

X2,f
∼
→X2, so that the map

L∆ ⊗K∞,∆
HomK∞,∆

(X1,f , X2,f)→ HomL∆
(X1, X2)

is an isomorphism of L∆-representations of ΓK,∆ (since X1,f and X2,f are
free of finite rank over K∞,∆). If we pick bases of X1,f and X2,f over K∞,∆,
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the same proof as in the previous corollary shows that there is a natural
isomorphism

HomK∞,∆
(X1,f , X2,f)

∼
→HomL∆

(X1, X2)f

of K∞,∆-representations of ΓK,∆. Taking invariants under ΓK,∆ gives the
K∆-linear isomorphism

HomRepK∞,∆
(ΓK,∆)(X1,f , X2,f)

∼
→HomRepL∆

(ΓK,∆)(X1, X2).

As Ext1RepK∞,∆
(ΓK,∆)(X1,f , X2,f) = H1(ΓK,∆, Xf) and

Ext1RepL∆
(ΓK,∆)(X1, X2) = H1(ΓK,∆, X) where we have put X =

HomL∆
(X1, X2) ∈ RepL∆

(ΓK,∆), the last statement reduces to show-
ing that the natural map

H1(ΓK,∆, Xf)→ H1(ΓK,∆, X)

is bijective. Let c : ΓK,∆ → Xf be a cocycle whose image in H1(ΓK,∆, X) is
trivial: there exists x ∈ X such that (∀g ∈ ΓK,∆) c(g) = g(x)− x. Fix B a
K∞,∆-basis of Xf . The action of ΓK,∆ on Xf and X is given, in the basis B,
by a continuous cocycle U : ΓK,∆ → GLd(K∞,∆) (where d is the rank of X
over L∆). Let ug ∈ Kd

∞,∆ (resp. v ∈ Ld
∆) the column vector whose coefficients

are the coordinnates of c(g) (resp. x) in the basisB: we have ug = Ugg(v)− v
i.e. g(v) = U−1

g (ug + v) for all g ∈ ΓK,∆. Takingm ∈ N large enough, we can
assume that U has values in GLd(Km,∆) and ug ∈ Km,∆ for all g ∈ ΓK,∆. Let
E be the sub-Km,∆-module of L∆ generated by 1 and the entries of v: it is of
finite type and stable under the action of ΓK,∆. By Proposition 3.22, we have
E ⊂ K∞,∆, so that x ∈ Xf , which means that the class of H1(ΓK,∆, Xf) is
trivial. This shows the injectivity of the map. To prove the surjectivity, start
from a continuous cocycle c : ΓK,∆ → X. It defines an extension X̃ of L∆ par

X. As L∆-modules, we have X̃ = X ⊕ L∆, the action of g ∈ ΓK,∆ is given
by g(x, λ) = (g(x) + c(g)g(λ), g(λ)). By Corollary 3.24, the K∞,∆-module

X̃f is free of rank d+ 1 and the map L∆ ⊗K∞,∆
X̃f → X is an isomorphism.

This shows that the sequence

0→ Xf → X̃f → K∆,∞ → 0

is exact when tensored by L∆ over K∆,∞: as L∆ is faithfully flat over K∆,∞

by Proposition 3.26, this implies that it is exact, so that X̃f defines an exten-
sion of K∞,∆ by Xf , that corresponds to a cohomology class in H1(ΓK,∆, Xf)
mapping to the class of c in H1(ΓK,∆, X). □
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Theorem 3.28. The functors

Repf
C∆

(GK,∆)↔ Repf
L∆

(ΓK,∆)

W 7→WHK,∆

C∆ ⊗L∆
X ←[ X

Repf
L∆

(ΓK,∆)↔ Repf
K∆,∞

(ΓK,∆)

X 7→ Xf

L∆ ⊗K∆,∞
Y ←[ Y

are equivalences of categories.

Corollary 3.29. If W ∈ Repf
C∆

(GK,∆), we have Hi(HK,∆,W ) = 0 for all
i ∈ N>0.

Proof. By what precedes, we have W ≃ C∆ ⊗K∞,∆
Y where Y =(

WHK,∆
)
f
∈ Repf

K∞,∆
(ΓK,∆). As Y is free of finite rank over K∞,∆, we have

Hi(HK,∆,W ) ≃ Hi(HK,∆, C∆)⊗K∞,∆
Y = 0

for all i ∈ N>0 by Theorem 3.3. □

3.30. Generalized Sen operators

Let Y be a free K∆,∞-representation of rank d of ΓK,∆.

Definition. The Sen operators of Y are the maps (φα)α∈∆ given by

φα(y) = lim
γ∈ΓKα

γ→Id

γ(y)− y

log(χ(γ))
.

Note that φα ∈ EndK∆,∞
(Y ) for all α ∈ ∆. As ΓK,∆ is commutative (since

ΓK is), the operators φα commute in EndK∆,∞
(Y ). Also, each φα commutes

with the action of ΓK,∆ by construction.

These operators describe the infinitesimal action of ΓK,∆ on Y . More
precisely, we have

Proposition 3.31. (cf [22, Theorem 4]). For all y ∈ Y , there is an open
subgroup ΓK,∆,y ◁ ΓK,∆ such that for all α ∈ ∆ and γ ∈ ΓK,α ∩ ΓK,∆,y, we
have

γ(y) = exp
(
log(χ(γ))φα

)
y.

Corollary 3.32. The set of elements in Y on which the action of ΓK,∆ is
finite (i.e. factors through a finite quotient) is

⋂
α∈∆

Ker(φα).
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Proof. Let y ∈
⋂

α∈∆

Ker(φα). By Proposition 3.31, there exists an open sub-

group ΓK,∆,y ◁ ΓK,∆ such that for all α ∈ ∆ and γ ∈ ΓK,α ∩ ΓK,∆,y, we
have γ(y) = exp

(
log(χ(γ))φα

)
y = y, so that the action of ΓK,∆ on y factors

through the finite quotient ΓK,∆/ΓK,∆,y. Conversely, if the action of ΓK,∆

on y ∈ Y is finite, there exists a open normal subgroup Γy ◁ ΓK,∆ such that
γ(y) = y for all γ ∈ Γy. This implies in particular that φα(y) = 0 for all
α ∈ ∆. □

Proposition 3.33. If n ∈ Z∆, the K∆-module Y (n)ΓK,∆ is of finite type,
and vanishes for all but finitely many values of n. Moreover, the map
K∆,∞ ⊗K∆

Y ΓK,∆ → Y is injective, and its image is precisely the set of ele-
ments in Y on which the action of ΓK,∆ is finite.

Proof. There exists m0 ∈ N and a basis B = (e1, . . . , ed) of Y over K∆,∞

such that the cocycle describing the action of ΓK,∆ on Y in B has values in

GLd(Km0,∆). If m ∈ N≥m0
, put Ym =

d⊕
i=1

Km,∆ei. If ∆
′ ⊂ ∆ and α ∈ ∆ \∆′,

we have a semi-linear action of ΓK,∆ on
(
Km,∆\{α} ⊗F0

K∞,{α}

)
⊗Km,∆

Ym:
restricting the action to ια(ΓK) ⊂ ΓK,∆ provides a K∞-representation of
ΓK . By [22, Theorem 6] (cf also [16, Proposition 2.6]), the K-vector space

((
Km,∆\{α} ⊗F0

K∞,{α}

)
⊗Km,∆

Ym(n)
)ια(ΓK)

is finite dimensional, and vanishes for all but finitely many values of nα (the
other components of n being fixed). Making m larger if necessary, we thus
may assume that it lies in Ym(n). Then

((
Km,∆′ ⊗F0

K∞,∆\∆′

)
⊗Km,∆

Ym(n)
)ια(ΓK)

is equal to

(
K∆′∪{α} ⊗F0

K∞,∆\(∆′∪{α})

)
⊗

K∆′∪{α}⊗F0
Km,∆\∆′∪{α}

((
Km,∆\{α} ⊗F0

K∞,{α}

)
⊗Km,∆

Ym(n)
)ια(ΓK)

inside
(
Km,∆′∪{α} ⊗F0

K∞,∆\(∆′∪{α})

)
⊗Km,∆

Ym(n).
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A finite induction thus proves that Y (n)ΓK,∆ lies in Ym(n) if m≫ 0 (in
particular it is of finite rank over K∆), and vanishes for all but finitely
many values of n.

Put Y ′
m =

⋂
α∈∆

Ker(φα|Ym
) ⊂ Ym. This is a Km,∆-module of finite type

endowed with a discrete semi-linear action of ΓK,∆. By flatness of Km,∆

over Km0,∆, we have Y ′
m ≃ Km,∆ ⊗Km0,∆

Y ′
m0

. Take a K-basis of Y ′
m0

: for
m≫ 0, it is fixed by ΓKm,∆, so that the action of ΓK,∆ on Y ′

m fac-
tors through ΓK,∆/ΓKm,∆ ≃ Gal(Km/K)∆. By Galois descent, the natural

map Km,∆ ⊗K∆
Y

′ΓK,∆
m → Y ′

m is an isomorphism. Tensoring with K∆,∞ thus
shows that

K∆,∞ ⊗K∆
Y ′ΓK,∆
m → Y ′ :=

⋂

α∈∆

Ker(φα)

is an isomorphism whenm≫ 0, implying that Y
′ΓK,∆
m = Y ′ΓK,∆ whenm≫ 0.

As Y ΓK,∆ ⊂ Y ′ ⊂ Y , we have Y ΓK,∆ = Y ′,ΓK,∆ , hence an isomorphism

K∆,∞ ⊗K∆
Y ΓK,∆

∼
→Y ′ ⊂ Y.

□

The previous proposition can be further refined in order to include all
Hodge-Tate weights:

Proposition 3.34. The natural map

⊕

n∈Z∆

K∆,∞(−n)⊗K∆

(
Y (n)

)ΓK,∆ → Y

is injective.

Proof. Keep notations of the previous proof. Let N ∈ N and EN =

{−N, . . . , N} ⊂ Z. Take N large enough so that
(
Y (n)

)ΓK,∆ vanishes when

n /∈ E∆
N (cf Proposition 3.33). If ∆′ ⊂ ∆ and n = (nα)α∈∆′ ∈ Z∆′

, we de-
note (n, 0∆\∆′) ∈ Z∆ the element whose component of index α is nα if α ∈ ∆′

and 0 otherwise. Assume α ∈ ∆ \∆′. We can see
(
Ym(n, 0∆\∆′)

)ΓK,∆′
(where

we identify ΓK,∆′ with ΓK,∆′ × {Id}∆\∆′ ⊂ ΓK,∆) as a K∆′ ⊗F0
Km,∆\∆′-

module endowed with a semi-linear action of ΓK,∆\∆′ . We can view it
as a Km-vector space (via the map iα : Km → K∆′ ⊗F0

Km,∆\∆′ given by
x 7→ 1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1, where x is the factor of index α) endowed
with a semi-linear action of ΓK (via ια : ΓK → ΓK,∆\∆′). By [11, Lemma
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2.3.1], the map

N⊕

q=−N

Km(−q)⊗Kiα

((
Ym(n, 0∆\∆′)

)ΓK,∆′
(q)

)ια(ΓK)
→

(
Ym(n, 0∆\∆′)

)ΓK,∆′

is injective. For all q ∈ Z, let (n, q, 0∆\(∆′∪{α})) ∈ Z∆ be the element whose
components are all equal to those of (n, 0∆\∆′), except that of index α which
is equal to q. As

(
Ym(n, q, 0∆\(∆′∪{α}))

)ΓK,∆′∪{α} =
((

Ym(n, 0∆\∆′)
)ΓK,∆′

(q)
)ια(ΓK)

,

if we tensor withKm,∆′(n)⊗F0
K∆\∆′ overK∆ and sum over all the n ∈ E∆′

N ,
we deduce that the map

⊕

ℓ∈E
∆′∪{α}
N

Km,∆′∪{α}(−ℓ)⊗K∆′∪{α}

(
Ym(ℓ, 0∆\(∆′∪{α}))

)ΓK,∆′∪{α}

→
⊕

n∈E∆′

N

(
Ym(n, 0∆\∆′)

)ΓK,∆′

is injective. The composition of these maps for growing ∆′ gives the natural
map ⊕

n∈E∆
N

Km,∆(−n)⊗K∆

(
Ym(n)

)ΓK,∆ → Ym

which is thus injective. The inductive limit (as m→∞) of these is the
natural map

⊕

n∈Z∆

K∆,∞(−n)⊗K∆

(
Y (n)

)ΓK,∆ =
⊕

n∈E∆
N

K∆,∞(−n)⊗K∆

(
Y (n)

)ΓK,∆ → Y

which is injective as well. □

Corollary 3.35. If W ∈ Repf
C∆

(GK,∆), there are finitely many n ∈ Z∆

such that
(
W (n)

)GK,∆ ̸= {0}, and the natural map

αHT,0(W ) :
⊕

n∈Z∆

C∆(−n)⊗K∆

(
W (n)

)GK,∆ →W

is injective.
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Notation. If V ∈ RepQp
(GK,∆), we put DSen(V ) =

(
(C∆ ⊗Qp

V )HK,∆
)
f
∈

Repf
K∆,∞

(ΓK,∆). By what precedes, the infinitesimal action of ΓK,∆ on
DSen(V ) endows it with K∆,∞-linear operators φα for α ∈ ∆. Similarly, we
put DC∆

(V ) = (C∆ ⊗Qp
V )GK,∆ : this is a K∆-module.

Corollary 3.36. If V ∈ RepQp
(GK,∆) and n ∈ Z∆, the K∆-module

DC∆
(V (n)) is of finite type and vanishes for all but finitely many n.

The natural map K∆,∞ ⊗K∆
DC∆

(V )→ DSen(V ) is injective, with image⋂
α∈∆

Ker(φα). Moreover, the natural map

αHT,0(V ) :
⊕

n∈Z∆

C∆(−n)⊗K∆
DC∆

(V (n))→ C∆ ⊗Qp
V

is injective.

4. Multivariable period rings, de Rham and Hodge-Tate

representations

4.1. Construction and first properties of BdR,∆

Let C♭ = lim
←−
x 7→xp

C be the tilt of C: this is an algebraically closed complete

valued field of characteristic p, endowed with a continuous action of GK .
Denote by OC♭ its ring of integers. Recall there is a surjective map

θ : W
(
OC♭

)
→ OC

whose kernel is principal, generated by ξ = p− [p̃] where p̃ = (p, p1/p, . . .) ∈
OC♭ . It extends into a surjective ring homomorphism θ : W

(
OC♭

)
[p−1]→ C.

We denote by B+
dR the completion of W

(
OC♭

)
[p−1] with respect to the

Ker(θ) = (ξ)-adic topology. The map θ extends into a surjective ring ho-
momorphism θ : B+

dR → C. The ring B+
dR is a DVR with uniformizer ξ and

residue field C. Another unifomizer is given by

t = log[ε] = −

∞∑

n=1

(1− [ε])n

n

where ε = (1, ζp, ζp2 , . . .) ∈ OC♭ is a compatible sequence of primitive pn-th
roots of unity. The natural map k → OC♭ gives rise to a ring homomorphisms
W(k)[p−1]→W

(
OC♭

)
[p−1]→ B+

dR. It extends into a field extension K →
B+
dR.
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Notation. •We have OC∆
/(p) ≃ (OC/(p))

⊗∆ (the tensor product is taken
over k). As the Frobenius map on OC/(p) is surjective, the same holds on
OC∆

/(p). We can thus define the tilt of OC∆
as

O♭
C∆

= lim
←−
x 7→xp

OC∆
=

{
(x(n))n∈N ∈ O

N
C∆

; (∀n ∈ N) (x(n+1))p = x(n)
}
.

This is a perfect k-algebra (the map k → O♭
C∆

being given by x 7→

([x], [x1/p], [x1/p
2

], . . .)), endowed with an action of GK,∆, induced by its
action on OC∆

. Moreover, the map

θ∆ : W(O♭
C∆

)→ OC∆

(an)n∈N 7→

∞∑

n=0

pna(n)n

is a GK,∆-equivariant surjective morphism of W(k)-algebras (cf [10, §5.1]).
By localization, it induces a GK,∆-equivariant surjective morphisms of F0-
algebras

θ∆ : W(O♭
C∆

)
[
1
p

]
→ C∆.

• Put
(
OC♭

)⊗∆
= OC♭ ⊗k · · · ⊗k OC♭ (where the copies of OC♭ are indexed

by ∆). If α ∈ ∆, put

p̃α = 1⊗ · · · ⊗ 1⊗ p̃⊗ 1⊗ · · · ⊗ 1

(where p̃ is the factor of index α).

Denote by Ip̃ ⊂
(
OC♭

)⊗∆
the ideal generated by {p̃α}α∈∆.

Lemma 4.2. The ring
(
OC♭

)⊗∆
is Ip̃-adically separated.

Proof. Let {eλ}λ∈Λ ⊂ OC♭ be a subset whose image modulo p̃ is a k-basis of
OC♭/(p̃). Then the familly {p̃ieλ}i∈N

λ∈Λ
is linearly independent over k, and gen-

erates a dense subspace of OC♭ . In particular, there is an injective k-linear
map f : OC♭ → kN×Λ such that f

(
p̃nOC♭

)
⊂ kN≥n ×Λ. The tensor prod-

uct of these provides an injective k-linear map f∆ :
(
OC♭

)⊗∆
→ kN

∆ ×Λ∆

,

and f∆(I
n
p̃ ) ⊂ kEn×Λ∆

, where En =
{
(iα)α∈∆ ∈ N∆ ;

∑
α∈∆

iα ≥ n
}
. In partic-

ular, we have f∆

( ∞⋂
n=0

Inp̃

)
⊂

∞⋂
n=0

kEn×Λ∆

= {0} (since
∞⋂
n=0

En = ∅), so that

∞⋂
n=0

Inp̃ = {0}. □
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Proposition 4.3. There is a natural injective morphism of k-algebras(
OC♭

)⊗∆
→ O♭

C∆
, that induces an isomorphism

π̃1,∆ :
(
OC♭

)⊗∆
/Ip̃

∼
→OC∆

/(p).

Moreover, O♭
C∆

is isomorphic to the Ip̃-adic completion of
(
OC♭

)⊗∆
.

Proof. Recall that for each m ∈ N, we have a surjective morphism of k-
algebras

πm : OC♭ → OC/(p)

(x(n))n∈N 7→ x(m)

(where the k-algebra structure on OC/(p) is given by x 7→ x1/p
m

), and
Ker(πm) = p̃p

m

OC♭ , hence an isomorphism π̃m : OC♭/(p̃p
m

)
∼
→OC/(p). Tak-

ing the tensor product of these, we get an isomorphism of k-algebras

π̃m,∆ :
(
OC♭/(p̃p

m

)
)⊗∆ ∼
→

(
OC/(p)

)⊗∆
≃ OC∆

/(p). This means that there is

a natural surjective morphism of k-algebras πm,∆ :
(
OC♭

)⊗∆
→ OC∆

/(p),

whose kernel is the ideal I
(m)
p̃ generated by

{
p̃p

m

α

}
α∈∆

. The diagrams

0 // I
(m)
p̃

//
(
OC♭

)⊗∆ πm,∆ // OC∆
/(p) // 0

0 // I
(m+1)
p̃

//
?�

OO

(
OC♭

)⊗∆ πm+1,∆ // OC∆
/(p) //

F

OO

0

(where F is the Frobenius map) commutative. Passing to inverse limits pro-
vides the exact sequence

0→ lim
←−
m

I
(m)
p̃ →

(
OC♭

)⊗∆
→ O♭

C∆
.

As I
(m)
p̃ ⊂ Ip

m

p̃ , we have lim
←−
m

I(m) =
∞⋂

m=1
I
(m)
p̃ ⊂

∞⋂
m=1

Ip
m

p̃ = {0} (cf Lemma

4.2), i.e.
(
OC♭

)⊗∆
is separated for the Ip̃-adic topology. This provides the

injective morphism
(
OC♭

)⊗∆
→ O♭

C∆
and the isomorphism π̃1,∆.
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As seen above, the isomorphisms π̃m,∆ insert in the commutative dia-
grams

(
OC♭

)⊗∆
/I

(m)
p̃

π̃m,∆ // OC∆
/(p)

(
OC♭

)⊗∆
/I

(m+1)
p̃

π̃m+1,∆ //

OOOO

OC∆
/(p)

F

OO

Passing to inverse limits gives an isomorphism lim
←−
m

(
OC♭

)⊗∆
/I

(m)
p̃

∼
→O♭

C∆
, so

that O♭
C∆

is the completion of OC∆
with respect to the topology associated

to the family of ideals (I
(m)
p̃ )m∈N>0

. As Ip
mδ

p̃ ⊂ I
(m)
p̃ ⊂ Ip

m

p̃ for all m ∈ N>0,
this topology coincides with the Ip̃-adic topology, proving the last part of
the proposition. □

Notation. For α ∈ ∆, put ξα = p− [p̃α] ∈W(O♭
C∆

). We have ξα ∈
Ker(θ∆).

Corollary 4.4. The ideal Ker(θ∆) is generated by {ξα}α∈∆.

Proof. We have θ∆(ξα) = 0 for all α ∈ ∆, so that the ideal generated by
{ξα}α∈∆ lies in Ker(θ∆). To prove that this inclusion is an equality, it is
enough to check it modulo p (because the source and the target of θ∆ are
p-adically separated and complete), i.e. that the kernel of the map

O♭
C∆
→ OC∆

/(p)

(given by x 7→ x(0)) is the ideal generated by Ip̃. This kernel contains Ip̃:
passing to the quotient, we get a morphismOC∆

/Ip̃ → OC∆
, which is nothing

but π̃1,∆. We conclude using Proposition 4.3. □

Definition. • Let Ainf,∆ be the completion of W(O♭
C∆

) with respect to

the θ−1
∆

(
pOC∆

)
-adic topology (cf [8, Définition 2.2]), where θ−1

∆

(
pOC∆

)
=

⟨p,Ker(θ∆)⟩. This is a W(k)-algebra endowed with an action of GK,∆

(because θ∆ is equivariant). The map θ∆ extends to a surjective GK,∆-
equivariant morphism of W(k)-algebras

θ∆ : Ainf,∆ → OC∆

(because OC∆
is p-adically complete).
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• Let B+
dR,∆ the completion of Ainf,∆

[
1
p

]
with respect to the Ker(θ∆)-adic

topology. This is a F0-algebra endowed with an action of GK,∆, and the map
θ∆ extends to a surjective θ∆-equivariant morphism of F0-algebras

θ∆ : B+
dR,∆ → C∆.

By definition, we have B+
dR,∆ = lim

←−
m≥1

Ainf,∆

[
1
p

]
/Ker(θ∆)

m. The p-adic

topology on Ainf,∆ induces a Banach space topolgy on each quotient
Ainf,∆

[
1
p

]
/Ker(θ∆)

m and we endow B+
dR,∆ with the inverse limit (i.e. prod-

uct) topology, which we call the canonical topology. Otherwise mentioned,
B+
dR,∆ is considered as a topological ring with this topology.

Remark 4.5. In contrast with B+
dR, the ring B+

dR,∆ depends of k when
δ > 1.

Proposition 4.6. If F is a finite subextension of K/F0, the F0-algebra
structure of B+

dR,∆ extends uniquely to a F∆-algebra structure.

Proof. This follows from the fact that F∆ is a finite étale F0-algebra. □

Notation. If α ∈ ∆, theOC♭-algebra structure ofO♭
C∆

(induced by the map
x 7→ 1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1, where x is the factor of index α) induces a
B+
dR-algebra structure on B+

dR,∆. All together, this provides a B+⊗∆
dR -algebra

structure on B+
dR,∆. In particular, any element b ∈ B+

dR provides an element

bα ∈ B+
dR,∆ (which is nothing but the image of 1⊗ · · · ⊗ 1⊗ b⊗ 1⊗ · · · ⊗ 1).

For instance, we have the elements tα and (p− [p̃])α = ξα.

Proposition 4.7. The ideal Ker(θ∆) ⊂ B+
dR,∆ is generated by {tα}α∈∆.

Proof. This follows from Corollary 4.4 and the fact that t and ξ both gen-
erate Ker(θ) in B+

dR, so that they differ by a unit in B+
dR. □

We endow B+
dR,∆ with the filtration defined by

Fili B+
dR,∆ = Ker(θ∆)

i

for all i ∈ N. This filtration is decreasing and exhaustive. Let gr B+
dR,∆ =

∞⊕
i=0

gri B+
dR,∆ be the associated graded ring.
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Proposition 4.8. Let R be a ring, x1, . . . , xn a regular sequence in R and
R̂ = lim

←−
m

R/Im the I-adic completion of R, where I ⊂ R the ideal generated

by {x1, . . . , xn}. Then the sequence x1, . . . , xn is regular in R̂.

Proof. This follows from [17, Theorem 39 (2)]. □

Lemma 4.9. The sequence
(
p̃α

)
α∈∆

is regular in O♭
C∆

.

Proof. By Proposition 4.3, O♭
C∆

is isomorphic to the Ip̃-adic completion of(
OC♭

)⊗∆
: Lemma 4.8 shows that it is enough to check that the sequence(

p̃α
)
α∈∆

is regular in
(
OC♭

)⊗∆
, i.e. that for each ∆′ ⊂ ∆ and α ∈ ∆ \∆′, the

element p̃α is regular in the quotient
(
OC♭

)⊗∆
/⟨p̃β⟩β∈∆′ ≃

(
OC♭/⟨p̃⟩

)⊗∆′

⊗k(
OC♭

)⊗(∆\∆′)
. This follows from the regularity of p̃ in the domain OC♭ , by

taking the tensor product with
(
OC♭/⟨p̃⟩

)⊗∆′

⊗k

(
OC♭

)⊗(∆\(∆′∪{α})
above

the field k. □

Proposition 4.10. The sequence
(
ξα
)
α∈∆

is regular in B+
dR,∆. Similarly,

the sequence (tα)α∈∆ is regular in B+
dR,∆.

Proof. By Lemma 4.9, the sequence
(
p̃α

)
α∈∆

is regular in O♭
C∆

. As p is

regular in W(O♭
C∆

), this implies that
(
p, ξα

)
α∈∆

is regular in W(O♭
C∆

). By
Proposition 4.8, the same holds in Ainf,∆. As Ainf,∆ is separated with respect
to the ⟨p, ξα⟩α∈∆-adic topology (the same holds for Ainf,∆ /⟨p, ξα⟩α∈∆′ for
any subset ∆′ ⊂ ∆), [7, Théorème 1] implies that any permutation of the
sequence (p, ξα)α∈∆ is regular in Ainf,∆ as well. This shows in particular
that

(
ξα
)
α∈∆

is regular in Ainf,∆. As localization is an exact functor, this

implies that
(
ξα
)
α∈∆

is also regular in Ainf,∆

[
1
p

]
. Lemma 4.8 then implies

that it is also a regular sequence in B+
dR,∆. The second part of the proposition

follows. □

Note that gr0 B+
dR,∆ = B+

dR,∆ /Ker(θ∆) ≃ C∆. By an abuse of notation,

we still denote by tα its image in gr1 B+
dR,∆.

Corollary 4.11. The morphism of C∆-algebras C∆[Xα]α∈∆ → gr B+
dR,∆

mapping Xα to tα for all α ∈ ∆ is an isomorphism.

Proof. This follows from Proposition 4.10 and [7, Théorème 1]. □

Corollary 4.12. We have H0(GK,∆,B
+
dR,∆) ≃ K∆.
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Proof. Let x ∈ H0(GK,∆,B
+
dR,∆): we have y := θ∆(x) ∈ C

GK,∆

∆ = K∆ since

θ∆ is equivariant. This implies that z := x− y ∈ H0(GK,∆,Fil
1 BdR,∆). As-

sume z ̸= 0: as the filtration is separated, there exists i ∈ N>0 such that
z ∈ Fili B+

dR,∆ \Fil
i+1 B+

dR,∆, so that the image z of z in gri B+
dR,∆ is not

zero. This implies in particular that H0(GK,∆, gr
i B+

dR,∆) ̸= 0. By Corol-

lary 4.11, we have gri B+
dR,∆ ≃

⊕
n∈N∆

|n|=i

C∆(n): by Theorem 3.5, this implies

that H0(GK,∆, gr
i B+

dR,∆) = 0: contradiction. This shows that z = 0 i.e.
x = y ∈ K∆. The reverse inclusion is obvious. □

Corollary 4.13. For all r ∈ N, we have H1(HK,∆, gr
r B+

dR,∆) =

H1(HK,∆,Fil
r B+

dR,∆) = {0}.

Proof. The equalities H1(HK,∆, gr
r B+

dR,∆) = {0} follow from the GK,∆-

modules isomorphisms grr B+
dR,∆ ≃ Symr

C∆

( ⊕
α∈∆

C∆tα
)
obtained by Corol-

lary 4.11 and Theorem 3.3.
If s > r, we prove by induction on s− r that H1(HK,∆, Br,s) = {0}, where
Br,s is the quotient Filr B+

dR,∆ /Fils B+
dR,∆. This is obvious if s− r = 1 since

Br,r+1 = grr B+
dR,∆. Assuming that H1(HK,∆, Br,s) = {0}, we have the exact

sequence of GK,∆-modules

0→ grs B+
dR,∆ → Br,s+1 → Br,s → 0

so that H1(HK,∆, gr
s B+

dR,∆)→ H1(HK,∆, Br,s+1)→ H1(HK,∆, Br,s) is exact,

hence the vanishing of H1(HK,∆, Br,s+1). To conclude we use the exact se-
quence

0→ lim
←−
s

(1)H0(HK,∆, Br,s)→ H1(HK,∆,Fil
r B+

dR,∆)→ lim
←−
s

H1(HK,∆, Br,s)→ 0

and the fact that the sequence
(
H0(HK,∆, Br,s)

)
s>r

has the Mittag-Leffler
property (the transition maps are surjective, which follows from the vanish-
ing of the cohomology of grs B+

dR,∆ for all s ≥ r). □

Definition. Put t∆ =
∏
α∈∆

tα ∈ B+
dR,∆, and BdR,∆ = B+

dR,∆

[
1
t∆

]
. As GK

acts on t by multiplication by the cyclotomic character, the group GK,∆

acts on t∆ by multiplication by χ
1
∆, where 1 it the element in Z∆ whose

components are all equal to 1. In particular, the action of GK,∆ on B+
dR,∆

extends into an action on BdR,∆. Also, we endow BdR,∆ = lim
−→
i

t−i
∆ B+

dR,∆ with
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the inductive limit topology. Finally, we endow BdR,∆ with a filtration in-
dexed by Z by putting

Filr BdR,∆ = lim
−→
i≥r

t−i
∆ Filiδ+r B+

dR,∆

for all r ∈ Z. This defines a decreasing separated and exhaustive filtration
on BdR,∆. Note that Filr BdR,∆ is stable under the action of GK,∆ for all
r ∈ Z.

Proposition 4.14. We have grr BdR,∆ ≃
⊕

n=(nα)α∈∆∈Z∆
∑

α nα=r

C∆t
n
∆, where t

n
∆ =

∏
α∈∆

tnα
α if n = (nα)α∈∆. In particular, we have

H0(GK,∆, gr
r BdR,∆) =

{
K∆ if r = 0

0 if r ̸= 0
.

Proof. By definition we have

grr BdR,∆ = lim
−→
i≥r

t−i
∆ griδ+r B+

dR,∆

≃ lim
−→
i≥r

⊕

m=(mα)α∈∆∈N∆
∑

α mα=iδ+r

C∆t
m−i1
∆ =

⊕

n=(nα)α∈∆∈Z∆
∑

α nα=r

C∆t
n
∆.

The second part follows from Theorems 3.4 and 3.5. □

Definition. Put BHT,∆ = gr BdR,∆. By what precedes, this is a graded C∆-
algebra endowed with an action of GK,∆, and BHT,∆ ≃ C∆[tα, t

−1
α ]α∈∆ ≃⊕

n∈Z∆

C∆(n) (as GK,∆-modules).

Corollary 4.15. We have H0(GK,∆,BdR,∆) = H0(GK,∆,BHT,∆) = K∆.

4.16. De Rham and Hodge-Tate representations

Put GF0
= Gal(K/F0). Similarly as we have seen in the proof of Proposi-

tion 3.22, the choice of an ordering α1 < · · · < αδ of ∆ provides an injective
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and GK,∆-equivariant ring homomorphism

ι̂ : C∆ →
∏

γ∈Gδ−1
F0

C

(induced by the map sending x1 ⊗ · · · ⊗ xδ to the element whose com-
ponent of index γ = (γ2, . . . , γδ) ∈ Gδ−1

F0
is x1γ2(x2γ3(x3 · · · γδ(xδ) · · · ))),

where the action of g = (g1, . . . , gδ) ∈ GK,∆ on the LHS is induced by

the action given by g · (x1 ⊗ · · ·xδ) = g1(x1)⊗ · · · ⊗ gδ(xδ) on K⊗∆, and
that on the RHS is given by g · (xγ)γ∈Gδ−1

K
=

(
g1xg·γ

)
γ
, where g · γ =

(g−1
1 γ2g2, g

−1
2 γ3g3, . . . , g

−1
δ−1γδgδ) if γ = (γ2, . . . , γδ). The tilt of this map

gives an injectiveGK,∆-equivariant ring homomorphism ι̂♭ : C♭
∆ →

∏
γ∈Gδ−1

F0

C♭.

The diagram

W(O♭
C∆

) �
�W(ι̂♭) //

θ∆

��

∏
γ∈Gδ−1

F0

W(OC♭)

∏
γ θ

��

� � //
∏

γ∈Gδ−1
F0

B+
dR

yy
OC∆

ι̂ //
∏

γ∈Gδ−1
F0

OC

is commutative. This induces an injective and GK,∆-equivariant ring homo-
morphism

ιdR : B+
dR,∆ →

∏

γ∈Gδ−1
F0

B+
dR .

The component of index γ of the image of tαi
by the previous map

is χ(γ2 · · · γi)t: this shows that it extends into an injective and GK,∆-
equivariant map

ιdR : BdR,∆ →
∏

γ∈Gδ−1
F0

BdR

(which shows in particular that BdR,∆ is reduced).

Notation. If V ∈ RepQp
(GK,∆), we put DdR(V ) = (BdR,∆⊗Qp

V )GK,∆ .
This is a K∆-module which is endowed with the filtration given
by Filr DdR(V ) = (Filr BdR,∆⊗Qp

V )GK,∆ . By BdR,∆-linearity, the inclusion
DdR(V ) ⊂ BdR,∆⊗Qp

V extends into a BdR,∆-linear and GK,∆-equivariant
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map

αdR(V ) : BdR,∆⊗K∆
DdR(V )→ BdR,∆⊗Qp

V.

We define DHT(V ) and αHT(V ) similarly.

Proposition 4.17. The K∆-modules DdR(V ) and DHT(V ) are of finite
type, and the maps αdR(V ) and αHT(V ) are injective.

Proof. • Assume that K/F0 is Galois with group GK/F0
, and put

B̃dR,∆ =
∏

γ∈Gδ−1
F0

BdR: as recalled above, there is an injective GK,∆-

equivariant ring homomorphism ιdR : BdR,∆ → B̃dR,∆ (that depends on the

choice of an ordering α1 < · · · < αδ on ∆). Put D̃dR(V ) =
(
B̃dR,∆ ⊗Qp

V
)GK,∆ ⊂

∏
γ∈Gδ−1

F0

BdR⊗Qp
V : the map ιdR induces a K∆-linear injective map

ι : DdR(V )→ D̃dR(V ). If (xγ)γ ∈
∏

γ∈Gδ−1
F0

BdR⊗Qp
V and g = (g1, . . . , gδ) ∈

GK,∆, we have g · (xγ)γ = (g1(xg·γ))γ , thus (xγ)γ ∈ D̃dR(V ) if and only

if g1(xg·γ) = xγ for all g ∈ GK,∆ and γ ∈ Gδ−1
F0

. If g ∈ GK and γ
0
=

(γ2, . . . , γδ) ∈ Gδ−1
F0

, define the element g = (g1, . . . , gδ) ∈ GK,∆ by g1 = g

and gi = γ−1
i gi−1γi for all i ∈ {2, . . . , δ} (we have indeed γ−1

i gi−1γi ∈ GK

since GK is normal in GF0
because K/F0 is Galois). Then we have g · γ

0
=

γ
0
, and the component of index γ

0
of g

(
xγ

)
γ
is g(xγ

0
): this shows that xγ

0
∈

BdR⊗Qp
V is fixed under GK , i.e. that xγ

0
∈ DdR,α1

(V ) = (BdR⊗Qp
V )GK

(where the action of GK on V is via the map ια1
: GK → GK,∆). This

implies that (xγ)γ is fixed by GK,∆ if and only if its components all be-

long to DdR,α1
(V ) and xg·γ = xγ for all γ ∈ Gδ−1

F0
and g = (IdK , g2, . . . , gδ) ∈

{IdK} ×Gδ−1
K . As Gδ−1

K acts transitively on those γ that map to a fixed

σ ∈ Gδ−1
K/F0

, this shows that

D̃dR(V ) =
∏

σ∈Gδ−1
K/F0

DdR,α1
(V ) ⊂

∏

γ∈Gδ−1
F0

DdR,α1
(V )

(where we embed the factor DdR,α1
(V ) of index σ diagonally in∏

γ∈Gδ−1
F0

γ 7→σ

DdR,α1
(V )). As DdR,α1

(V ) is a finite dimensional K-vector space, this

shows in particular that D̃dR(V ) is a K∆-module of finite type.
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The natural map BdR⊗K DdR,α1
(V )→ BdR⊗Qp

V is injective: so are the
maps ( ∏

γ∈Gδ−1
F0

γ 7→σ

BdR

)
⊗K DdR,α1

(V )→
( ∏

γ∈Gδ−1
F0

γ 7→σ

BdR

)
⊗Qp

V

for all σ ∈ Gδ−1
K/F0

, so that the map

α̃dR(V ) : B̃dR,∆ ⊗K∆
D̃dR(V )→ B̃dR,∆ ⊗Qp

V

is injective (since its localizations via the projection maps ισ : K∆ → K are
precisely the maps above). The diagram

BdR,∆⊗K∆
DdR(V )

αdR(V ) //
� _

ιdR⊗1
��

BdR,∆⊗Qp
V

� _

ιdR⊗1

��

B̃dR,∆ ⊗K∆
DdR(V )

� _

1⊗ι
��

B̃dR,∆ ⊗K∆
D̃dR(V ) �

� α̃dR(V ) // B̃dR,∆ ⊗Qp
V

is commutative: this implies that αdR(V ) is injective.

• If K/F0 is not assumed to be Galois, let K ′ ⊂ K the Galois closure of
K over F0: what precedes shows that DdR,K′(V ) := (BdR,∆⊗Qp

V )GK′,∆ is a
K ′

∆-module of finite type (hence projective of finite rank) endowed with a
semi-linear action of Gal(K ′/K)∆, and that the natural map

αdR,K′(V ) : BdR,∆⊗K′
∆
DdR,K′(V )→ BdR,∆⊗Qp

V

is injective. By Galois descent, we have DdR,K′(V ) ≃ K ′
∆ ⊗K∆

DdR(V ) as
Gal(K ′/K)∆-modules, and DdR(V ) is of finite type over K∆. The commu-
tative diagram

BdR,∆⊗K∆
DdR(V )

αdR(V )

,,
BdR,∆⊗Qp

V

BdR,∆⊗K′
∆
DdR,K′(V )

αdR,K′ (V )

33

this implies that αdR(V ) is injective.
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• Consider now the Hodge-Tate side. By Corollary 3.36, the K∆-module

DHT(V ) =
( ⊕

n∈Z∆

C∆(n)⊗Qp
V
)GK,∆

=
⊕

n∈Z∆

(C∆(n)⊗Qp
V )GK,∆

is of finite type (the sum is finite and all but finitely many factors are zero).
Moreover, the natural map

αHT,0(V ) :
⊕

n∈Z∆

C∆(−n)⊗K∆
(C∆(n)⊗Qp

V )GK,∆ → C∆ ⊗Qp
V

is injective and GK,∆-equivariant. If we tensor with C∆(m) over C∆ and
sum over all m ∈ Z∆, this shows that the maps in the diagram

⊕
n,m∈Z∆

C∆(m− n)⊗K∆
(C∆(n)⊗Qp

V )GK,∆ //
⊕

m∈Z∆

C∆(m)⊗Qp
V

⊕
ℓ∈Z∆

C∆(ℓ)⊗K∆
DHT(V )

αHT(V ) // BHT⊗Qp
V

are injective. □

Definition. A p-adic representation V of GK,∆ is said de Rham (resp.
Hodge-Tate) when the map αdR(V ) (resp. αHT(V )) is bijective. We denote by
RepdR(GK,∆) (resp. RepHT(GK,∆)) the full subcategory of RepQp

(GK,∆)

whose objects are de Rham (resp. Hodge-Tate) representations.

Recall that DdR(V ) is equipped with a decreasing filtration Fil•DdR(V ):
denote by gr DdR(V ) the corresponding graded module. Note that the map
αdR(V ) is compatible with filtrations, where Filr(BdR,∆⊗K∆

DdR(V )) =∑
i∈Z

Fili BdR,∆⊗K∆
Filr−iDdR(V ) for all i ∈ Z.

Proposition 4.18. The filtration Fil•DdR(V ) is separated and exhaustive.
There is a canonical injective map gr DdR(V )→ DHT(V ), and αdR(V ) is
strictly compatible with filtrations. Moreover, if V is de Rham, then it is
Hodge-Tate and the map gr DdR(V )→ DHT(V ) is an isomorphism.
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Proof. The first assertion follows from the corresponding fact on BdR,∆ and
the finiteness of DdR(V ) as a K∆-module. If r ∈ Z, the exact sequence

0→ Filr+1 BdR,∆ → Filr BdR,∆ → grr BdR,∆ → 0

tensored with V induces the exact sequence

0→ Filr+1DdR(V )→ Filr DdR(V )→ (grr BdR,∆⊗Qp
V )GK,∆

i.e. an injective map grr DdR(V )→
⊕

n=(nα)α∈∆∈Z∆
∑

α nα=r

(C∆(n)⊗Qp
V )GK,∆ (cf

Proposition 4.14). Summing over r ∈ Z provides an injective K∆-linear map
iV : gr DdR(V )→ DHT(V ).

As αdR(V ) is compatible with filtrations, it induces a K∆-linear map

grαdR(V ) : gr(BdR,∆⊗K∆
DdR(V ))→ gr BdR,∆⊗K∆

V.

We have gr(BdR,∆⊗K∆
DdR(V )) ≃ gr BdR,∆⊗K∆

gr DdR(V ) ≃
BHT⊗K∆

gr DdR(V ) and gr BdR,∆ = BHT,∆ (as K∆ is a product of
fields, the proof of this isomorphism reduces to the case of tensor products
of filtered vector spaces). Via these isomorphisms, we have the commutative
diagram

BHT⊗K∆
gr DdR(V )

grαdR(V ) //
� _

1⊗iV
��

BHT,∆⊗Qp
V

BHT,∆⊗K∆
DHT(V )

'
� αHT(V )

44

which implies that grαdR(V ) is injective, so that αdR(V ) is strictly compat-
ible with filtrations.

Assume V is de Rham, so that αdR(V ) is an isomorphism. Then
grαdR(V ) is an isomorphism: the preceding diagram shows that αHT(V )
is surjective: it is an isomorphism by Proposition 4.17, and V is Hodge-
Tate. This implies that 1⊗ iV is an isomorphism. As BHT,∆ is faithfully flat
over K∆ (because C∆ is), this shows that iV is an isomorphism. □

Proposition 4.19. If V ∈ RepQp
(GK,∆) is de Rham (resp. Hodge-Tate),

then DdR(V ) (resp. DHT(V )) is free of rank dimQp
(V ) over K∆.

Proof. Assume V is de Rham: the map αdR(V ) : BdR,∆⊗K∆
DdR(V )→

BdR,∆⊗Qp
V is an isomorphism. Use Remark 3.23 and its notations: for
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each i ∈ I, its localization

Ei ⊗ αdR(V ) : (Ei ⊗K∆
BdR,∆)⊗Ei

(Ei ⊗K∆
DdR(V ))

→ (Ei ⊗K∆
BdR,∆)⊗Qp

V

is a Ei ⊗K∆
BdR,∆-linear isomorphism. This implies that

dimEi
(Ei ⊗K∆

DdR(V )) = dimQp
(V ).

As it holds for all i ∈ I, this shows that DdR(V ) is free as a K∆-module.
The proof of the Hodge-Tate case is the same. □

Question : Is the converse true, i.e. is it true that if DdR(V ) is free of rank
dimQp

(V ) over K∆, then V is de Rham?

5. Sen theory for B
+
dR,∆

-representations

5.1. Almost étale descent

Put L+dR,∆ = H0(HK,∆,B
+
dR,∆). We have

l+dR,∆ := K∆,∞[[tα]]α∈∆ ⊂ L+dR,∆.

These subrings of B+
dR,∆ are endowed with the filtration induced by the

latter. In the sequel, we follow rather closely [3].

Lemma 5.2. For all r ∈ N, we have natural isomorphisms

Symr
K∆,∞

( ⊕
α∈∆

K∆,∞tα

)
∼ //

� _

��

grr l+dR,∆� _

��
Symr

L∆

( ⊕
α∈∆

L∆tα

)
∼ //

� _

��

grr L+dR,∆� _

��
Symr

C∆

( ⊕
α∈∆

C∆tα

)
∼ // grr B+

dR,∆ .

Moreover, the map l+dR,∆/Fil
r l+dR,∆ → L+dR,∆/Fil

r L+dR,∆ is faithfully flat.
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Proof. The bottom map is an isomorphism by Corollary 4.11. This implies
that the filtration on l+dR,∆ is given by the powers of the ideal generated by
(tα)α∈∆, showing that the top map is an isomorphism as well. To check that
the middle map is also an isomorphism, we start from the exact sequence

0→ Filr+1 B+
dR,∆ → Filr B+

dR,∆ → grr B+
dR,∆ → 0.

Taking invariants under HK,∆ gives the exact sequence

0→ Filr+1 L+dR,∆ → Filr L+dR,∆

→ H0(HK,∆, gr
r B+

dR,∆)→ H1(HK,∆,Fil
r+1 B+

dR,∆).

By Corollary 4.13, we have H1(HK,∆,Fil
r+1 B+

dR,∆) = {0}, so that the natural
map

grr L+dR,∆ → H0(HK,∆, gr
r B+

dR,∆) ≃ Symr
L∆

(⊕

α∈∆

L∆tα

)

is an isomorphism. The last statement follows from Proposition 3.26. □

Corollary 5.3. Under the assumptions of Proposition 3.25, put

L′+dR,∆ = H0(HK′,∆,B
+
dR,∆) and l′+dR,∆ = K ′

∆,∞[[tα]]α∈∆.

The natural maps L+dR,∆ → L′+dR,∆ and l+dR,∆ → l′+dR,∆ are finite étale, and

Galois with group Gal(K ′
∞/K∞)∆ when K ′

∞/K∞ is Galois.

Proof. By Lemma 5.2 and Proposition 3.25, the natural maps K ′⊗∆
∞ ⊗K⊗∆

∞

L+dR,∆ → L′+dR,∆ and K ′⊗∆
∞ ⊗K⊗∆

∞
l+dR,∆ → l′+dR,∆ induce isomorphisms on

graded rings: these are isomorphisms. The statements thus follow from
Proposition 3.25. □

Proposition 5.4. (cf [3, Proposition 3.4]) The maps

lim
−→

H◁HK,∆

H open

H1(HK,∆/H,GLd(B
+H
dR,∆))→ H1(HK,∆,GLd(B

+
dR,∆))

H1(ΓK,∆,GLd(L
+
dR,∆))→ H1(GK,∆,GLd(B

+
dR,∆))

induced by inflation maps are bijective.

Proof. Being inductive limits of inflation maps, they are injective. Let
U : HK,∆ → GLd(B

+
dR,∆) be a continuous cocycle. The composite θ∆ ◦
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U : HK,∆ → GLd(C∆) is a continuous cocycle (by definition of the canonical
topology on B+

dR,∆): by Corollary 3.11, there exists a normal open subgroup
H of HK,∆ (which we may and will assume of the form HK′,∆ for some finite
Galois extension K ′ of K in K ) such that the restriction of θ∆ ◦ U to H has
a trivial cohomology class. This implies that there exists B0 ∈ GLd(B

+
dR,∆)

such that the cocycle U0 : g 7→ B−1
0 Ugg(B0) is such that θ∆(U0,g) = Id for all

g ∈ H.
Let M ∈ N and assume sequences (Bm)0≤m<M and (Um)0≤m<M have been
constructed such that:

(i) Bm ∈ Id+Md(Fil
m B+

dR,∆) and Um : HK,∆ → GLd(B
+
dR,∆) is a continu-

ous cocycle;

(ii) Um,g = B−1
m Um−1,gg(Bm) for all g ∈ HK,∆ and 1 ≤ m < M ;

(iii) Um,g ∈ Idd+Md(Fil
m+1 B+

dR,∆) for all g ∈ H and 0 ≤ m < M .

Denote by VM,g the image of UM−1,g in

Md(Fil
M B+

dR,∆)/Md(Fil
M+1 B+

dR,∆) ≃ Md(gr
M B+

dR,∆).

If g, h ∈ H, we have

UM−1,gh − Id = UM−1,gg(UM−1,h)− Id

= (UM−1,g − Id)g(UM−1,h) + g(UM−1,h − Id)

so that

UM−1,gh − Id ≡ UM−1,g − Id+g(UM−1,h − Id) mod Md(Fil
M+1 B+

dR,∆)

since

g(UM−1,h) ≡ Id mod Md(Fil
M B+

dR,∆).

Reducing modulo Md(Fil
M+1 B+

dR,∆) gives

VM,gh = VM,g + g(VM,h),

so that g 7→ VM,g is a continuous cocycle H = HK′,∆ → Md(gr
M B+

dR,∆).

In particular, the entries of VM are cocycles H → grM B+
dR,∆. By Corol-

lary 4.13, these are trivial: there exists BM ∈ Id+Md(Fil
M B+

dR,∆) such

that if we put UM,g = B−1
M UM−1,gg(BM ) for all g ∈ HK,∆, then UM,g ∈

Idd+Md(Fil
M+1 B+

dR,∆) for all g ∈ H.
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By induction, we thus construct an infinite sequence (Bm)m∈N. Property (i)
ensures that the infinite product B = B0B1B2 · · · converges in GLd(B

+
dR,∆),

and condition (ii) and (iii) imply that B−1Ugg(B) = Id for all g ∈ H. This
shows that the image of U in H1(H,GLd(B

+
dR,∆)) is trivial. By the inflation-

restriction exact sequence

{1} → H1(HK,∆/H,GLd(B
+H
dR,∆))

→ H1(HK,∆,GLd(B
+
dR,∆))→ H1(H,GLd(B

+
dR,∆))

the class of U in H1(HK,∆,GLd(B
+
dR,∆)) lies in the image of

H1(HK,∆/H,GLd(B
+H
dR,∆)), showing the surjectivity of the first map.

The proof of the bijectivity of the second map is identical, replacing HK,∆ by
GK,∆. Note that in that case, we can take H = HK,∆ by Corollary 3.21. □

Corollary 5.5. If W is a free B+
dR,∆-representation of rank d of HK,∆,

then WHK,∆ is a projective L+dR,∆-module of rank d, and the natural map

B+
dR,∆⊗L+

dR,∆
WHK,∆ →W

is an isomorphism of B+
dR,∆-representations of HK,∆.

Proof. By Proposition 5.4, there exists a finite Galois extension K ′ of K in
K and a basisB ofW over B+

dR,∆ fixed under the action ofHK′,∆. The L
′+
dR,∆-

moduleW ′ generated byB coincides withWHK′,∆(it is thus stable under the
action of HK,∆/HK′,∆ ≃ Gal(K ′

∞/K∞)∆) and is free of rank d. Moreover,
B+
dR,∆⊗L′+

dR,∆
W ′ →W is an isomorphism of B+

dR,∆-representations of HK,∆.

As L+dR,∆ → L′+dR,∆ is finite Galois étale with Galois group HK,∆/HK′,∆ ≃

Gal(K ′
∞/K∞)∆ (cf Corolary 5.3), we have L′+dR,∆ ⊗L+

dR,∆
W ′HK,∆/HK′,∆

∼
→W ′

by Galois descent, and W ′HK,∆/HK′,∆ = WHK,∆ is projective of rank d
over L+dR,∆. Extending the scalars to B+

dR,∆ provides the isomorphism

B+
dR,∆⊗L+

dR,∆
WHK,∆ →W of B+

dR,∆-representations of HK,∆. □

Corollary 5.6. (cf [16]) Let W1,W2 be free B
+
dR,∆-representations of HK,∆.

Then

HomRep
B
+
dR,∆

(HK,∆)(W1,W2) ≃ HomL+
dR,∆

(
W

HK,∆

1 ,W
HK,∆

2

)

and Ext1Rep
B
+
dR,∆

(HK,∆)(W1,W2) = 0.
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Proof. We have B+
dR,∆⊗L+

dR,∆
W

HK,∆

1 ≃W1 and B+
dR,∆⊗L+

dR,∆
W

HK,∆

2 ≃W2,

thus

HomB+
dR,∆

(W1,W2) ≃ HomB+
dR,∆

(
B+
dR,∆⊗L+

dR,∆
W

HK,∆

1 ,B+
dR,∆⊗L+

dR,∆
W

HK,∆

2

)

≃ B+
dR,∆⊗L+

dR,∆
HomL+

dR,∆

(
W

HK,∆

1 ,W
HK,∆

2

)

as B+
dR,∆-representations of HK,∆. Taking invariants under HK,∆ provides

an isomorphism

HomRep
B
+
dR,∆

(HK,∆)(W1,W2) ≃ HomL+
dR,∆

(
W

HK,∆

1 ,W
HK,∆

2

)

(recall that HomL+
dR,∆

(
W

HK,∆

1 ,W
HK,∆

2

)
is projective over L+dR,∆ since W

HK,∆

1

and W
HK,∆

2 are). Moreover, we have

Ext1Rep
B
+
dR,∆

(HK,∆)(W1,W2)

≃ Ext1Rep
B
+
dR,∆

(HK,∆)

(
B+
dR,∆,HomB+

dR,∆
(W1,W2)

)

≃ H1
(
HK,∆,B

+
dR,∆⊗L+

dR,∆
HomL+

dR,∆

(
W

HK,∆

1 ,W
HK,∆

2

))

≃ H1
(
HK,∆,B

+
dR,∆

)
⊗L+

dR,∆
HomL+

dR,∆

(
W

HK,∆

1 ,W
HK,∆

2

)

= {0}

since HomL+
dR,∆

(
W

HK,∆

1 ,W
HK,∆

2

)
is a projective L+dR,∆-module and

H1
(
HK,∆,B

+
dR,∆

)
= {0} by Corollary 4.13. □

Definition. We say a L+dR,∆-module X is potentially free if there exists a fi-

nite extension K ′ of K in K such that L′+dR,∆ ⊗L+
dR,∆

X is a free L′+dR,∆-module

of finite rank. We denote by Modpf(L+dR,∆) the corresponding category.

Corollary 5.7. The functors

Repf
B+

dR,∆

(HK,∆)→Modpf(L+dR,∆)

W 7→WHK,∆

and Repf
B+

dR,∆

(GK,∆)→ Repf
L+
dR,∆

(ΓK,∆)

W 7→WHK,∆

are equivalences of categories.

5.8. Decompletion along K∆,∞/K∆

Definition. Let X be a L+dR,∆-representation of ΓK,∆.
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(i) If X is killed by Filr+1 L+dR,∆ for some r ∈ N, we denote by Xf the
union of its sub-K∆-modules of finite type that are stable under the
action of ΓK,∆ (this is the set of elements in X whose orbit under ΓK,∆

generates a K∆-module of finite type). Note that this matches with
definition of §3.6 in the case r = 0.

(ii) In the general case, we put Xf = lim
←−
r

(
X/Filr+1 L+dR,∆X

)
f
.

Note that Xf is a sub-l+dR,∆-module of X and is stable by the action of ΓK,∆.

Proposition 5.9. Let r ∈ N and X a free L+dR,∆/Fil
r+1 L+dR,∆-

representation of rank d of ΓK,∆. Then Xf is free of rank d over
l+dR,∆/Fil

r+1 l+dR,∆, and the natural map

L+dR,∆ ⊗l+dR,∆
Xf → X

is an isomorphism of L+dR,∆-representations of Γ+
K,∆.

Proof. The proof is similar to that of [3, Proposition 3.17]. We use induc-
tion on r, the case r = 0 being Corollary 3.24: assume r > 0. Put X ′ =
Filr L+dR,∆X: this is a free L∆-representation of rank d

(
r+δ−1
δ−1

)
of ΓK,∆; and

X ′′ = X/X ′ ≃ (L+dR,∆/Fil
r L+dR,∆)⊗L+

dR,∆
X: this is a free L+dR,∆/Fil

r L+dR,∆-

representation of rank d of ΓK,∆. By the induction hypothesis and Corol-
lary 3.24, the natural maps

L∆ ⊗K∞,∆
X ′

f → X ′

L+dR,∆ ⊗l+dR,∆
X ′′

f → X ′′

are isomorphisms. In particular, we can find a basis B
′′ of X ′′ over

L+dR,∆/Fil
r L+dR,∆ such that the cocycle U ′′ giving the action of ΓK,∆ onX ′′ in

the basis B′′ has values in GLd(l
+
dR,∆/Fil

r l+dR,∆). Let B be a basis of X over

L+dR,∆/Fil
r+1 L+dR,∆ lifting B

′′: by construction, the cocycle U giving the ac-

tion of ΓK,∆ on X in the basis B has values in GLd
(
pr−1

r (l+dR,∆/Fil
r l+dR,∆)

)
,

where prr : L
+
dR,∆/Fil

r+1 L+dR,∆ → L+dR,∆/Fil
r L+dR,∆ is the canonical surjec-

tion. By Lemma 5.2, we have

pr−1
r (l+dR,∆/Fil

r l+dR,∆) = l+dR,∆/Fil
r+1 l+dR,∆ + grr(L+dR,∆)

= K∞,∆,<r[Tα]α∈∆ ⊕ grr(L+dR,∆)

whereK∞,∆,<r[Tα]α∈∆ is the sub-K∞,∆-module of elements inK∞,∆[Tα]α∈∆
of total degree < r. For all g ∈ ΓK,∆, we thus can write uniquely Ug = Û ′′

g +
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Ũg where Ûg ∈ GLd(K∞,∆,<r[Tα]α∈∆) and Ũg ∈ Md(gr
r L+dR,∆). Note that Û

′′

is a lift of U ′′, but it is not a cocycle. As ΓK,∆ is finitely generated, we can

find n ≥ nK (cf Proposition 2.1) such that Û ′′
g ∈ GLd(Kn,∆,<r[Tα]α∈∆) for

all g ∈ ΓK,∆.
Recall that if α ∈ ∆, there is a L∆,∆\{α},n-linear and ΓK,∆-equivariant

projector Rn,α : L∆ → L∆,∆\{α},n (cf notations before Theorem 3.4). They
commute to each other: their composite provides a Kn,∆-linear projector
Rn,∆ : L∆ → Kn,∆. We extend Rn,∆ to grr(L+dR,∆) by putting Rn,∆(tα) = tα
for all α ∈ ∆ (cf Lemma 5.2). As U is a cocycle, we have Ugγ = Ugg(Uγ)
i.e.

Û ′′
gγ + Ũgγ =

(
Û ′′
g + Ũg

)
g
(
Û ′′
γ + Ũγ

)

= Û ′′
g g

(
Û ′′
γ

)
+ Û ′′

g g
(
Ũγ

)
+ Ũgg

(
Û ′′
γ

)

for all g, γ ∈ ΓK,∆, since Ũgg
(
Ũγ

)
= 0 in Md(L

+
dR,∆/Fil

r+1 L+dR,∆), as

Fil2r L+dR,∆ ⊂ Filr+1 L+dR,∆. Applying Rn,∆, we get

Û ′′
gγ +Rn,∆

(
Ũgγ

)
= Û ′′

g g
(
Û ′′
γ

)
+ Û ′′

g g
(
Rn,∆

(
Ũγ

))
+Rn,∆

(
Ũg

)
g
(
Û ′′
γ

)

=
(
Û ′′
g +Rn,∆

(
Ũg

))
g
(
Û ′′
γ +Rn,∆

(
Ũγ

))

since Rn,∆ is Kn,∆-linear and ΓK,∆-equivariant. If we put U
(n)
g =

Û ′′
g +Rn,∆

(
Ũg

)
for all g ∈ ΓK,∆, this means that U (n) : ΓK,∆ →

GLd
(
l+dR,∆/Fil

r+1 l+dR,∆

)
is a cocycle. For g ∈ ΓK,∆, put Ũ

(n)
g = Ug − U

(n)
g ∈

Md

(
grr L+dR,∆

)
. By the computation above (with U (n) and Ũ (n) instead of

Û ′′ and Ũ), we have

U (n)
gγ + Ũ (n)

gγ = U (n)
g g

(
U (n)
γ

)
+ U (n)

g g
(
Ũ (n)
γ

)
+ Ũ (n)

g g
(
U (n)
γ

)

so that

Ũ (n)
gγ = U (n)

g g
(
Ũ (n)
γ

)
+ Ũ (n)

g g
(
U (n)
γ

)
= Ugg

(
Ũ (n)
γ

)
+ Ũ (n)

g g
(
Uγ

)

since U (n) is a cocycle. This means that Ũ (n) is a cocycle that defines an
extension of L∆ ⊗K∞,∆

X ′′
f by L∆ ⊗K∞,∆

X ′
f as L∆-representations of ΓK,∆.

By Corollary 3.27, this extension comes from an extension of X ′′
f by X ′

f

as K∞,∆-representations of ΓK,∆, by extension of scalars: there exists N ∈
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Md(gr
r L+dR,∆) such that

Ũ (n)
g + Ugg(N)−NUg ∈ Md(gr

r l+dR,∆)

for all g ∈ ΓK,∆. Now put B = Id+N ∈ GLd(L
+
dR,∆): for all g ∈ ΓK,∆ we have

B−1Ugg(B) = (Id−N)
(
U (n)
g + Ũ (n)

g

)
(Id+g(N))

= U (n)
g + Ũ (n)

g −NU (n)
g + U (n)

g g(N) ∈ GLd(l
+
dR,∆/Fil

r+1 l+dR,∆).

This means that if we make a change of basis from B using B, we reduce
to the case where the cocycle U takes values in GLd(l

+
dR,∆/Fil

r+1 l+dR,∆).

Proposition 3.22 then shows that Xf is nothing but the l+dR,∆/Fil
r+1 l+dR,∆-

span of the basis just constructed: in particular, it is free, and the map

L+dR,∆ ⊗l+dR,∆
Xf → X

is an isomorphism of L+dR,∆-representations of Γ
+
K,∆. □

Proposition 5.10. Let X le a free L+dR,∆-representation of rank d of ΓK,∆.

Then Xf is free of rank d over l+dR,∆, and the natural map

L+dR,∆ ⊗l+dR,∆
Xf → X

is an isomorphism of L+dR,∆-representations of Γ+
K,∆. Moreover, Xf is the

union of the sub-l+dR,∆-modules of X that are of finite type and stable under
the action of ΓK,∆.

Proof. For r ∈ N, put Xr = (L+dR,∆/Fil
r+1 L+dR,∆)⊗L+

dR,∆
X. This is a free

L+dR,∆/Fil
r+1 L+dR,∆-representation of rank d of ΓK,∆.

By Proposition 5.9, Xr,f is a free l+dR,∆/Fil
r+1 l+dR,∆-representation of rank

d of ΓK,∆, and the natural map L+dR,∆ ⊗l+dR,∆
Xr,f → Xr is an isomor-

phism of L+dR,∆/Fil
r+1 L+dR,∆-representations of ΓK,∆. The maps Xr+1 →

Xr are surjective: so are the maps Xr+1,f → Xr,f by faithful flatness of
L+dR,∆/Fil

r+1 L+dR,∆ over l+dR,∆/Fil
r+1 l+dR,∆ (cf Lemma 5.2). This implies

that any basis of Xr,f can be lifted to a basis of Xr+1,f : by induction,
we can construct a sequence (Br)r∈N such that Br is a basis of Xr,f over
l+dR,∆/Fil

r+1 l+dR,∆ and is the image of Br+1 in (l+dR,∆/Fil
r+1 l+dR,∆)⊗l+dR,∆

Xr+1,f for all r ∈ N. This sequence defines a basis B of Xf = lim
←−
r

Xr,f over
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l+dR,∆. By extension of scalars, B is a basis of X over L+dR,∆ as well, so that
the natural map

L+dR,∆ ⊗l+dR,∆
Xf → X

is an isomorphism of L+dR,∆-representations of ΓK,∆.

Let X ′
f be the union of the sub-l+dR,∆-modules of X that are of finite

type and stable under the action of ΓK,∆: we have Xf ⊂ X ′
f . The reverse

inclusion is checked modulo Filr+1 l+dR,∆ for all r ∈ N. Let Y be a finite

type sub-l+dR,∆-module of X that is stable under the action of ΓK,∆, and

Yr = (l+dR,∆/Fil
r+1 l+dR,∆)⊗L+

dR,∆
Y ⊂ Xr (cf Lemma 5.2). Let y1, . . . , ys be

a generating family of Yr over l+dR,∆ and g1, . . . , gu a finite set of topological

generators of ΓK,∆. There exists n ∈ N and coefficients (c
(a)
i,j )1≤i,j≤s

1≤a≤u
in Kn,∆

such that ga(yi) =
s∑

j=1
c
(a)
i,j yj . This implies that for all m ≥ n, the sub-Km,∆-

module Yr,m of Yr generated by y1, . . . , ys is stable under the action of ΓK,∆:
we have Yr,m ⊂ Xr,f . As Yr =

⋃
m≥n

Yr,m, we thus have Yr ⊂ Xr,f . □

Theorem 5.11. The functor

Repf
B+

dR,∆

(GK,∆)→ Repf
l+dR,∆

(ΓK,∆)

W 7→
(
WHK,∆

)
f

is an equivalence of categories.

Proof. This follows from Corollary 5.7 and Proposition 5.10. □

Notation. Put LdR,∆ = L+dR,∆

[
1
t∆

]
and ldR,∆ = l+dR,∆

[
1
t∆

]
=

K∆,∞[[tα]]
[
1
tα

]
α∈∆

. We have ldR,∆ ⊂ LdR,∆ = H0(HK,∆,BdR,∆).

Definition. (1) A lattice of a free BdR,∆-module (resp. ldR,∆-module) M
of finite rank, is a sub-B+

dR,∆-module (resp. sub-l+dR,∆-module) gener-
ated by a basis of M .

(2) The category of regular representations Repreg
BdR,∆

(GK,∆) (resp.

Repreg
ldR,∆

(ΓK,∆)) is the isogeny category of Repf
B+

dR,∆

(GK,∆) (resp.

Repf
l+dR,∆

(ΓK,∆)), i.e. the category whose objects are free BdR,∆-

modules (resp. ldR,∆-modules) of finite rank endowed with a semi-
linear action of GK,∆ (resp. ΓK,∆), and admitting a GK,∆-stable (resp.
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ΓK,∆-stable) lattice which defines an object of RepB+
dR,∆

(GK,∆) (resp.

Repl+dR,∆
(ΓK,∆)).

Theorem 5.12. The functor

Repreg
BdR,∆

(GK,∆)→ Repreg
ldR,∆

(ΓK,∆)

induced by that of Theorem 5.11 is an equivalence of categories.

5.13. The module with connection associated with a
l
+
dR,∆-representation

Notation. Let Ω+ = Ω+
l+dR,∆/K∆,∞

(resp. Ω = Ω+
ldR,∆/K∆,∞

) be the l+dR,∆-

module of continuous K∆,∞-differentials of l+dR,∆ (resp. ldR,∆) having poles

of order ≤ 1 on the divisor (t∆ = 0). This is the free l+dR,∆-module (resp.

ldR,∆-module) with basis
(
d tα
tα

)
α∈∆

.

Definition. A module with connection over l+dR,∆ is a free l+dR,∆-module Y
of finite rank equipped with a K∆,∞-linear map

∇Y : Y → Y ⊗l+dR,∆
Ω+

satisfying the Leibniz rule: ∇Y (λy) = y ⊗ d y + λ∇Y (y) for all λ ∈ l+dR,∆

and y ∈ Y . If Y1 and Y2 are two modules with connection over l+dR,∆,
we endow Y1 ⊗l+dR,∆

Y2 (resp. Homl+dR,∆
(Y1, Y2)) with the connection ∇Y1

⊗

IdY2
+ IdY1

⊗∇Y2
(resp. f 7→ ∇Y2

◦ f − (f ⊗ IdΩ+) ◦ ∇Y1
). A morphism be-

tween two modules with connection is an horizontal l+dR,∆-linear map. This
defines a tensor category denoted Rl+dR,∆

.

Similarly, one defines the category RldR,∆
of free ldR,∆-modules of finite

rank with connection. If (Y,∇Y ) ∈ RldR,∆
, the connection ∇Y is said regu-

lar if there exists a lattice Y in Y such that ∇Y (Y) ⊂ Y ⊗l+dR,∆
Ω+ so that

(Y,∇Y |Y) ∈ Rl+dR,∆
. We denote R

reg
ldR,∆

the full subcategory of RldR,∆
made of

modules with regular connection.

Notation. Let Y ∈ Repf
l+dR,∆

(ΓK,∆). If r ∈ N, the quotient Yr :=(
l+dR,∆/Fil

r+1 l+dR,∆

)
⊗l+dR,∆

Y is a free l+dR,∆/Fil
r+1 l+dR,∆-module of finite rank

endowed with a continuous semi-linear action of ΓK,∆: in particular, it de-
fines an object of Repf

K∆,∞
(ΓK,∆) (cf Lemma 5.2). The infinitesimal action

of ΓK,∆ on Yr provides Sen operators (∇Yr,α)α∈∆: these are K∆,∞-linear
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endomorphisms of Yr characterized by the fact that for all y ∈ Yr, there ex-
ists an open normal subgroup ΓK,∆,y ◁ ΓK,∆ such that for all α ∈ ∆ and
γ ∈ ΓK,α ∩ ΓK,∆,y, we have γ(y) = exp

(
log(χ(γ))∇Yr,α

)
y (cf Section 3.30).

These maps are compatible as r grows: we thus obtain K∆,∞-linear en-
domorphisms (∇Y,α)α∈∆ of Y such that for all y ∈ Y and all r ∈ N, there
exists an open normal subgroup ΓK,∆,y,r ◁ ΓK,∆ such that for all α ∈ ∆ and
γ ∈ ΓK,α ∩ ΓK,∆,y,r, we have

γ(y) ≡ exp
(
log(χ(γ))∇Yr,α

)
y mod (Filr+1 l+dR,∆)Y.

Proposition 5.14. Let Y ∈ Repl+dR,∆
(ΓK∆) and α ∈ ∆. Then

∇Y,α(γ(y)) = γ(∇Y,α(y)) for all y ∈ Y and γ ∈ ΓK,∆. Moreover, if
y ∈ Y and β ∈ ∆, we have

∇Y,α(tβy) =

{
tβ∇Y,α(y) if β ̸= α

tαy + tα∇Y,∆(y) if β = α
.

Proof. This is checked modulo Filr+1 for all r ∈ N. The first statement fol-
lows from the corresponding property of Sen operators. For the second one,
fix y ∈ Yr: we have ∇Yr,α(tβy) = lim

γ∈ΓKα

γ→Id

γ(tβy)−tβy
log(χ(γ)) . If γ ∈ ΓKα

and β ̸= α, we

have γ(tβy) = tβγ(y), so that ∇Yr,α(tβy) = tβ∇Yr,α(y): assume β = α. We
have γ(tαy) = χ(γ)tαγ(y), so that

γ(tαy)− tαy

log(χ(γ)
=

χ(γ)tαγ(y)− tαy

log(χ(γ)
= tα

(χ(γ)− 1

log(χ(γ)
γ(y) +

γ(y)− y

log(χ(γ)

)

which converges to tα(y +∇Yr,α(y)) as γ converges to Id. □

Definition. Let Y ∈ Repl+dR,∆
(ΓK∆). If y ∈ Y , we put

∇Y (y) =
∑

α∈∆

∇Y,α(y)⊗
d tα
tα
∈ Y ⊗l+dR,∆

Ω+.

Proposition 5.15. Let Y ∈ Repl+dR,∆
(ΓK∆). The map ∇Y is an integrable

connection.

Proof. The Leibniz rule follows from Proposition 5.14, and the integrability
from the fact that ΓK,∆ is abelian. □
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We thus have a functor

Repf
l+dR,∆

(ΓK,∆)→ Rl+dR,∆

which induces functors

Repreg
ldR,∆

(ΓK,∆)→ R
reg
ldR,∆

and Repreg
BdR,∆

(GK,∆)→ R
reg
ldR,∆

.

Let Y ∈ Repf
l+dR,∆

(ΓK,∆). If y ∈ Y ΓK,∆ , we have ∇Y,α(y) = 0 for all

α ∈ ∆, hence ∇Y (y) = 0. By K∆,∞-linearity, the inclusion Y ΓK,∆ ⊂ Y ∇Y =0

induces a map

c∇(Y ) : K∆,∞ ⊗K∆
Y ΓK,∆ → Y ∇Y =0.

Proposition 5.16. The K∆-module Y ΓK,∆ is of finite type and the map
c∇(Y ) is an isomorphism.

Proof. If r ∈ N, put Yr = (l+dR,∆/Fil
r+1 l+dR,∆)⊗l+dR,∆

Y : this is an object of

Repf
K∆,∞

(ΓK,∆). Put also

Y ∇Y =0
r = {y ∈ Yr ; (∀α ∈ ∆)∇Yr,α(y) = 0}

(this is a an abuse of notation since ∇Y does not make sense on Yr). By
Proposition 3.33, the natural map

K∆,∞ ⊗K∆
Y ΓK,∆
r → Y ∇Y =0

r

is an K∆,∞-linear isomorphism. We have Y ∇Y =0 = lim
←−
r

Y ∇Y =0
r , so in partic-

ular the inverse limit of the above isomorphisms is an isomorphism

lim
←−
r

K∆,∞ ⊗K∆
Y ΓK,∆
r

∼
→Y ∇Y =0.

Similarly, we have Y ΓK,∆ = lim
←−
r

Y
ΓK,∆
r . The exact sequence

0→ grr Y → Yr+1 → Yr → 0

induces the exact sequence

0→
(
grr Y

)ΓK,∆ → Y
ΓK,∆

r+1 → Y ΓK,∆
r .
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We have grr Y ≃
⊕

n∈N∆

|n|=r

Y1(n), so that
(
grr Y

)ΓK,∆ ≃
⊕

n∈N∆

|n|=r

(
Y1(n)

)ΓK,∆ . By

Proposition 3.33 again, we know that
(
Y1(n)

)ΓK,∆ = {0} for all but finitely

many values of n. This implies that
(
grr Y

)ΓK,∆ = {0}, i.e. that the natural

map Y
ΓK,∆

r+1 → Y
ΓK,∆
r is injective when r ≫ 0. As Y

ΓK,∆
r is a K∆-module of

finite type (hence a F0-space of finite dimension) for all r ∈ N, this implies

that Y
ΓK,∆

r+1 → Y
ΓK,∆
r is in fact an isomorphism when r ≫ 0. In particular,

the map Y ΓK,∆ → Y
ΓK,∆
r is an isomorphism for r ≫ 0 (this proves the first

part of the proposition), and lim
←−
r

K∆,∞ ⊗K∆
Y

ΓK,∆
r ≃ K∆,∞ ⊗K∆

Y ΓK,∆ . □

5.17. Application to p-adic representations: link with
multivariate (ϕ,Γ)-modules

Let V ∈ RepQp
(GK,∆). Then BdR,∆⊗Qp

V ∈ Repreg
BdR,∆

(GK,∆) (a GK,∆-

stable lattice being given by B+
dR,∆⊗Qp

V ∈ Repreg
BdR,∆

(GK,∆)). Put

D+
dif(V ) =

(
(B+

dR,∆⊗Qp
V )HK,∆

)
f

and Ddif(V ) = ldR,∆ ⊗l+dR,∆
D+
dif(V ). By what precedes, this provides objects

in Rl+dR,∆
and R

reg
ldR,∆

respectively.

We have Ddif(V ) = D+
dif(V )

[
1
t∆

]
, D+

dif(V )ΓK,∆ = (B+
dR,∆⊗Qp

V )GK,∆ and

Ddif(V )ΓK,∆ = DdR(V ).

Proposition 5.18. (cf [3, Proposition 7.1]) Let V ∈ RepQp
(GK,∆). Then

V is de Rham if and only if Ddif(V ) is trivial (as a module with connection).

Proof. Assume V is de Rham: there exists n ∈ Z∆ such that V (n)
has Hodge-Tate weight whose components are all non-positive, so that
DdR(V (n)) = D+

dR(V (n)) =: (B+
dR,∆⊗Qp

V (n))GK,∆ . The map αdR(V ) is an
isomorphism, hence

α+
dR : B+

dR,∆⊗K∆
D+
dR(V (n))→ B+

dR,∆⊗Qp
V (n)

is injective with cokernel killed by t∆. Taking invariants under HK,∆, we get
an injective map

g : L+dR,∆ ⊗K∆
D+
dR(V (n))→ (B+

dR,∆⊗Qp
V (n))HK,∆
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whose cokernel is killed by some power of t∆. The commutative diagram

l+dR,∆ ⊗K∆
D+
dR(V (n))

f //
� _

��

D+
dif(V (n))

� _

��
L+dR,∆ ⊗K∆

D+
dR(V (n))

g // (B+
dR,∆⊗Qp

V (n))HK,∆

shows that f is injective. If y ∈ D+
dif(V (n)), there exists N ∈ N such that

tN∆y ∈ Im(g) ∩ D+
dif(V (n)). By definition of the functor X 7→ Xf , this shows

that tN∆y ∈ l+dR,∆ ⊗K∆
D+
dif(V (n)). The cokernel of f is thus of t∆-torsion, so

that f induces an isomorphism

ldR,∆ ⊗K∆
D+
dR(V (n))

∼
→Ddif(V (n)) = Ddif(V )

which implies that Ddif(V ) is trivial (as a module with connection).
Conversely, assume that Y := Ddif(V ) is trivial as a module with con-

nection over ldR,∆: the natural map

ldR,∆ ⊗K∆,∞
Y ∇Y =0 → Y

is an isomorphism. As Y ∇Y =0 is a K∆,∞-module of finite type, there exists
n ∈ N such that Y ∇Y =0 ⊂ t−n

∆ D+
dif(V ). Replacing V with V (n) for an appro-

priate n ∈ Z∆, we may asume that n = 0, so that Y ∇Y =0 = D+
dif(V )∇Y =0 =

K∆,∞ ⊗K∆
D+
dR(V ) (the last equality by Proposition 5.16). Extending the

scalars from K∆,∞ to BdR,∆, we deduce that

αdR(V ) : BdR,∆⊗K∆
D+
dR(V )→ BdR,∆⊗Qp

V

is an isomorphism, i.e. that V is de Rham. □

Now we relate our constructions to multivariate overconvergent (φ,Γ)-
modules. These were constructed in [20] and [12], under the hypothesis that
K is a finite extension of Qp, what we thus assume henceforth. We start by
recalling the definitions and results we will need from [20] and [12]. In the
classical, univariate case, put

AF0
=

{∑

n∈Z

anϖ
n ; (∀n ∈ Z) an ∈W(k) lim

n→−∞
an = 0

}

where ϖ is seen as a variable. This is a Cohen ring for the field EF0
= k((ϖ)).

We equip AF0
with the commuting (semi-linear) Frobenius operator and
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ΓF0
-action given by

φ(ϖ) = (1 +ϖ)p − 1 and γ(ϖ) = (1 +ϖ)χ(γ) − 1.

Put BF0
= Frac(AF0

) = AF0

[
1
p

]
and let Bur

F0
the maximal unramified exten-

sion of BF0
: this is a DVF with uniformizer p and whose residue field E is a

separable closure ofEF0
. We have an injective morphismAF0

→ Ã := W(C♭)
sending ϖ to [ε]− 1. It extends into an injective map A→ Ã, where A is
the p-adic completion of the ring of integers of Bur

F0
. There is a Frobenius

operator φ and a action of GF0
on B = A

[
1
p

]
so that the previous map is

GF0
-equivariant and compatible with Frobenius. Moreover, there is an iso-

morphism HF0
≃ Gal(B /BF0

). As HK ≤ HF0
, we put BK = BHK : this is a

finite Galois extension of B0, and there exists an element ϖK ∈ BK such
that its ring of integers

AK =
{∑

n∈Z

anϖ
n
K ; (∀n ∈ Z) an ∈W(k′) lim

n→−∞
an = 0

}

where k′ is the residue field of K∞. This is a Cohen ring for the field EHK =:
EK = k′((ϖK)).

By [15], the functor T 7→ (A⊗Zp
T )HK induces an equivalence between

RepZp
(GK) and the category Modét

AK
(φ,Γ) of étale (φ,Γ)-modules over

AK , whose objects are AK-modules of finite type endowed with commuting
and semi-linear Frobenius operator and ΓK-action, such that linearization of
the Frobenius operator is an isomorphism. By inverting p, there is a similar
equivalence between the isogeny categories.

The multivariate generalization of Fontaine result was proved in [26]: let
AK,∆ be the p-adic completion of the tensor product AK ⊗Zp

· · · ⊗Zp
AK

where the copies of AK are indexed by ∆ (the copy of AK of index α ∈ ∆
will be denotedAK,α), andBK,∆ = AK,∆

[
1
p

]
. We haveAK,∆/(p) =: EK,∆ =

EK ⊗Fp
· · · ⊗Fp

EK (where the copies of EK are indexed by ∆). For each
α ∈ ∆, let φα and ΓK,α = ια(ΓK) denote the actions of φ and ΓK on the
factor of index α fixing the other factors. Denote by φ∆ the monoid generated
by the φα for α ∈ ∆. There exists a multivariate analogues of A and B: let
A∆ (resp. B∆) be the p-adic completion of lim

−→
F

AF,∆ where F runs over the

finite subextensions of K/K (resp. B∆ = A∆

[
1
p

]
). These rings are endowed

with commuting actions of φ∆ and GK,∆, and A∆/(p) ≃ lim
−→
F

EF,∆. There is
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an equivalence of categories

RepZp
(GK,∆)→Modét

AK,∆
(φ∆,ΓK,∆)

T 7→ (A∆ ⊗Zp
T )HK,∆

where RepZp
(GK,∆) is the category of Zp-modules of finite type endowed

with a continuous linear action of GK,∆, and Modét
AK,∆

(φ∆,ΓK,∆) the cat-
egory of étale (φ∆,ΓK,∆)-modules over AK,∆, whose objects are finitely
generated projective AK,∆-modules with commuting semilinear actions of
the φα for α ∈ ∆ and ΓK,∆, and such that the linearization of φα is an
isomorphism for all α ∈ ∆ (cf [12, §2.3] and [12, Theorem 4.1]). By invert-
ing p, there is a similar equivalence RepQp

(GK,∆)→Modét
BK,∆

(φ∆,ΓK,∆)
between the corresponding isogeny categories.

On the other hand, Fontaine result was refined by Cherbonnier-Colmez
as follows. Let v♭ be the valuation on C♭ normalized by v♭(p̃) = 1. If r ∈ Q>0,

let Ã(0,r] ⊂ Ã be the subset made of those elements z =
∞∑

m=0
pm[zm] (with

(zm)m∈N ∈ (C♭)N) such that lim
m→∞

rv♭(zm) +m = +∞. Recall there are em-

beddings AK ⊂ A →֒ Ã: put A
(0,r]
K = AK ∩ Ã(0,r] and A(0,r] = A ∩ Ã(0,r].

Inverting p, we define analogues B
(0,r]
K ⊂ B(0,r]. The subring of overconver-

gent elements in AK (resp. A) is A†
K :=

⋃
r>0

A
(0,r]
K (resp. A† :=

⋃
r>0

A(0,r]).

Inverting p, we define analogues B†
K ⊂ B† (these are fields). Those rings

are stable under the action of GK , and we have (A(0,r])HK = A
(0,r]
K and

(A†)HK = A†
K . Moreover, we have φ(A(0,r]) ⊂ A(0,r/p], so that A† and A†

K

are stable under φ. Defining Modét
A

†
K

(φ,Γ) similarly as Modét
AK

(φ,Γ), we

have:

Theorem 5.19. ([13, Proposition III.5.1 & corollaire III.5.2]) The functor

RepZp
(GK)→Modét

A
†
K

(φ,Γ)

T 7→ (A† ⊗Zp
T )HK

is an equivalence of categories.

This result was extended to the multivariate case in [20] and [12].

If r ∈ R>0, let A
(0,r]
F0,∆

⊂ AF0,∆ be the subring made of those elements
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∑
n∈Z∆

(an1
ϖn1

α1
)⊗ · · · ⊗ (anδ

ϖnδ
αδ
) (with (an1

, . . . , anδ
) ∈W(k)∆) such that

lim
|n|→∞

vp(an1
· · · anδ

) + rp
p−1 min{n1, . . . , nδ} = +∞.

Put A†
F0,∆

=
⋃

r∈R>0

A
(0,r]
F0,∆

⊂ AF0,∆ and B†
F0,∆

= A†
F0,∆

[
1
p

]
. The subrings

A†
F0,∆

and B†
F0,∆

of BF0,∆ are stable by φ∆ and ΓF0,∆. In this context, the

analogue ofA† is constructed as follows. For a finite subextension F ofK/F0

and r ∈ Q>0, we put A
(0,r]
F,∆,◦ = A

(0,r]
F ⊗Zp

· · · ⊗Zp
A

(0,r]
F (where the copies

of A
(0,r]
F are indexed by ∆), and A

(0,r]
F,∆ = A

(0,r]
F0,∆
⊗

A
(0,r]
F0,∆,◦

A
(0,r]
F,∆,◦. We have

A
(0,r]
∆,◦ = lim

−→
F

A
(0,r]
F,∆,◦ = A(0,r] ⊗Zp

· · · ⊗Zp
A(0,r]. Put A

(0,r]
∆ = A

(0,r]
F0,∆
⊗

A
(0,r]
F0,∆,◦

A
(0,r]
∆,◦ and A†

∆ =
⋃
r>0

A
(0,r]
∆ . Inverting p we get rings B

(0,r]
∆ ⊂ B†

∆. These

rings admit an action of GK,∆. By [20, Lemma 3.2.1], we have (A†
∆)

HK,∆ =

A†
K,∆ =:

⋃
r>0

A
(0,r]
K,∆. Moreover, if α ∈ ∆, we have an operator φα : A

(0,r]
∆ →

A
(0,r/p]
∆ , so that there is an action of φ∆ on A†

∆ and B†
∆. The natural map

A†
∆ → A∆ (induced by the maps A

(0,r]
∆,◦ → A∆ extended by A

(0,r]
K -linearity)

is GK,∆ and φ∆-equivariant. The generalization of Theorem 5.19 is:

Theorem 5.20. ([20, Corollary 3.4.4], [12, Theorem 6.15]) The functor

D† : RepZp
(GK,∆)→Modét

A
†
K,∆

(φ∆,ΓK,∆)

T 7→ (A†
∆ ⊗Zp

T )HK

where the target category is defined similarly as Modét
AK,∆

(φ∆,ΓK,∆), is an
equivalence of categories.

Moreover, by [20, Theorem 3.4.2] and [12, Theorem 6.14], base extension
to AK,∆ over A†

K,∆ induces an equivalence of categories

Modét
A

†
K,∆

(φ∆,ΓK,∆)
∼
→Modét

AK,∆
(φ∆,ΓK,∆).

Notation. If T ∈ RepZp
(GK,∆) and r ∈ Q>0, we put D(0,r](T ) =(

A
(0,r]
∆ ⊗Zp

T
)HK,∆ . This is an A

(0,r]
K,∆-module endowed with an action of

ΓK,∆. Moreover, for each α ∈ ∆, the operator φα induces a semi-linear map

D(0,r](T )→ D(0,r/p](T ).
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Lemma 5.21. Let T ∈ RepZp
(GK,∆) be free of rank d. There exists rT ∈

Q>0 such that for all r ∈ Q∩]0, rT ], the natural map

α(0,r](T ) : A
(0,r]
∆ ⊗

A
(0,r]
K,∆

D(0,r](T )→ A
(0,r]
∆ ⊗Zp

T

is an isomorphism and D(0,r](T ) is projective of rank d over A
(0,r]
K,∆.

Proof. The A†
K,∆-module D†(T ) is projective of finite type: we can find a

finite set (ai)1≤i≤s generating the unit ideal in A†
K,∆ such that the localiza-

tion D†(T )ai
is free of rank d = rkZp

(T ) over (A†
K,∆)ai

for all i ∈ {1, . . . , s}.

We can choose rT ∈ Q>0 small enough such that ai ∈ A
(0,rT ]
K,∆ and there ex-

ists a (A†
K,∆)ai

-basis (xi,j)1≤j≤d of D†(T )ai
made of elements in D(0,rT ](T )ai

for all i ∈ {1, . . . , s}. Put Di =
d⊕

j=1

(
A

(0,r]
K,∆(T )

)
ai
xi,j ⊂ D(0,r](T )ai

. By Theo-

rem 5.20, the natural map

α†(T ) : A†
∆ ⊗A

†
K,∆

D†(T )→ A†
∆ ⊗Zp

T

is an isomorphism. Localizing, this provides an isomorphism(
A†

∆

)
ai
⊗A

†
K,∆

D†(T )→
(
A†

∆

)
ai
⊗Zp

T , which implies that the localization

(α(0,rT ](T ))ai
:
(
A

(0,r]
∆

)
ai
⊗

A
(0,r]
K,∆

D(0,r](T )→
(
A

(0,r]
∆

)
ai
⊗Zp

T is injective.

In the basis (1⊗ xi,j)1≤j≤d and the basis induced by any basis of T over

Zp, this isomorphism is given by a matrix Mi ∈ GLd
((
A†

∆

)
ai

)
. Shrinking

rT further if necessary, we may assume that Mi ∈ GLd
((
A

(0,rT ]
∆

)
ai

)
. This

means that the composite map

(
A

(0,rT ]
∆

)
ai
⊗

(A
(0,rT ]

K,∆ )ai

Di →
(
A

(0,rT ]
∆

)
ai
⊗

A
(0,rT ]

K,∆

D(0,rT ](T )

(α(0,rT ](T ))ai−−−−−−−−→
(
A

(0,rT ]
∆

)
ai
⊗Zp

T

is an isomorphism. This implies that (α(0,rT ](T ))ai
is surjective, hence an

isomorphism, so that the map
(
A

(0,rT ]
∆

)
ai
⊗

A
(0,rT ]

K,∆

Di →
(
A

(0,rT ]
∆

)
ai
⊗

A
(0,rT ]

K,∆

D(0,rT ](T ) is an isomorphism as well. Taking invariants under HK,∆ implies

that the map Di →
(
A

(0,rT ]
K,∆

)
ai
⊗

A
(0,rT ]

K,∆

D(0,rT ](T ) is an isomorphism. As this

holds for all i ∈ {1, . . . , s}, this shows that α(0,rT ](T ) is an isomorphism and

that D(0,rT ](T ) is projective of rank d over A
(0,rT ]
K,∆ . This implies that the

similar statement holds when rT is replaced by any r ∈ Q∩]0, rT ]. □
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If n ∈ N>0 and r ≥ rn := 1
(p−1)pn−1 , there is an injective map

in : Ã
(0,r] → B+

dR such that in(ϖ) = [ε1/p
n

]− 1 = ε(n) exp(t/pn)− 1 and

in(A
(0,r]
K ) ⊂ Kn[[t]] (cf [14, Proposition III.2.1]). The tensor product of these

maps, indexed by ∆, induces a ring homomorphism

in,∆ : A
(0,r]
∆,◦ →

⊗

α∈∆

B+
dR → B+

dR,∆

(note that it is not injective in general, since the tensor product in the LHS
is taken over Zp whereas it is taken over F0 in the RHS). It restricts into a
ring homomorphism

in,∆ : A
(0,r]
K,∆,◦ →

⊗

α∈∆

Kn[[tα]]→ l+dR,∆.

Lemma 5.22. If r > max{rn, δp
−n}, the restriction of in,∆ to A

(0,r]
F0,∆,◦ ex-

tends into a map A
(0,r]
F0,∆

→ F0,∞[[tα]]→ l+dR,∆.

Proof. This is checked modulo Fils+1 l+dR,∆ for all s ∈ N. If x =
∑

n∈Z∆

(an1
ϖn1)⊗ · · · ⊗ (anδ

ϖnδ) ∈ A
(0,r]
F0,∆

, we have to check that the

series in,∆(x) =
∑

n∈Z∆

an1
· · · anδ

δ∏
i=1

(
ε(n) exp(tαi

/pn)− 1
)ni converges in

F0,∞[tα]α∈∆/(tα)
s+1
α∈∆ for the p-adic topology. For each n ∈ Z∆, we have

δ∏

i=1

(
ε(n) exp(tαi

/pn)− 1
)ni

=

δ∏

i=1

( ni∑

ki=0

(−1)ni−ki
(
ε(n)

)ki
(
ni

ki

)
exp(kitαi

/pn)
)

=

δ∏

i=1

(
(ε(n) − 1)ni +

ni∑

ki=0

(−1)ni−ki
(
ε(n)

)ki
(
ni

ki

)
(exp(kitαi

/pn)− 1)
)

If m = (m1, . . . ,mδ) ∈ N∆, the coefficient of tm1
α1
· · · tmδ

αδ
in the latter expres-

sion is

cn,m := (ε(n) − 1)

∑

1≤i≤δ
mi=0

ni ∏

1≤i≤δ
mi ̸=0

( ni∑

ki=0

(−1)ni−ki
(
ε(n)

)ki
(
ni

ki

)(
ki

pn

)mi

)
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whose valuation is larger that 1
(p−1)pn−1

( ∑
1≤i≤δ
mi=0

ni

)
− n|m|. The coefficient

of tm1
α1
· · · tmδ

αδ
in in,∆(x) is the sum of the series

∑
n∈Z∆

an1
· · · anδ

cn,m. If

n ∈ Z∆, we have vp(an1
· · · anδ

cn,m) ≥ 1
(p−1)pn−1

( ∑
1≤i≤δ
mi=0

ni

)
− n|m| if µn :=

min{n1, . . . , nδ) ≥ 0, and this goes to +∞ when |n| → ∞. Assume µn < 0:
we have

vp(an1
· · · anδ

cn,m) = vp(an1
· · · anδ

) + rp
p−1µn + vp(cn,m)− rp

p−1µn

≥ vp(an1
· · · anδ

) + rp
p−1µn + 1

(p−1)pn−1

∑

1≤i≤δ
mi=0

ni − n|m| − rp
p−1µn

≥ vp(an1
· · · anδ

) + rp
p−1µn + 1

(p−1)pn−1 δµn − n|m| − rp
p−1µn

≥ vp(an1
· · · anδ

) + rp
p−1µn − n|m|+ p

p−1

(
δ
pn − r

)
µn

≥ vp(an1
· · · anδ

) + rp
p−1µn − n|m|.

As lim
|n|→∞

vp(an1
· · · anδ

) + rp
p−1 min{n1, . . . , nδ} = +∞ by hypothesis, this

shows that the series indeed converges. □

If r > max{rn, δp
−n}, Lemma 5.22 implies that B+

dR,∆ is equipped with

a A
(0,r]
F0,∆

-algebra structure: the map in,∆ : A
(0,r]
∆,◦ → B+

dR,∆ extends into a ring
homomorphism

in,∆ : A
(0,r]
∆ → B+

dR,∆ .

Theorem 5.23. Let T ∈ RepZp
(GK,∆). If r ∈ Q>0 is small enough, there

is a ΓK,∆-equivariant isomorphism of l+dR,∆-modules

ldR,∆ ⊗A
(0,r]
K,∆

D(0,r](T )
∼
→Ddif

(
T
[
1
p

])
.

Proof. By Lemma 5.21, there exists rT ∈ Q>0 such that for all r ∈
Q∩]0, rT ], the natural map

A
(0,r]
∆ ⊗

A
(0,r]
K,∆

D(0,r](T )→ A
(0,r]
∆ ⊗Zp

T

is a GK,∆-equivariant isomorphism. Take n ∈ N>0 large enough such that
max{rn, δp

−n} ≤ rT , and assume that r ∈ Q>0 is such that max{rn, δp
−n} ≤

For the author's personal use only.

For the author's personal use only.



✐

✐

“2-Mazzari” — 2024/8/23 — 2:01 — page 87 — #63
✐

✐

✐

✐

✐

✐

Multivariable de Rham representations 87

r ≤ rT . Extending the scalars to B+
dR,∆ via in,∆ provides a GK,∆-equivariant

isomorphism

B+
dR,∆⊗A

(0,r]
K,∆

D(0,r](T )→ B+
dR,∆⊗Zp

T ≃ B+
dR,∆⊗l+dR,∆

D+
dif(V )

where V = T
[
1
p

]
∈ RepQp

(GK,∆). Taking invariants under HK,∆ gives a
ΓK,∆-equivariant isomorphism

L+dR,∆ ⊗A
(0,r]
K,∆

D(0,r](T )
∼
→ L+dR,∆ ⊗l+dR,∆

D+
dif(V ).

Applying the functor X 7→ Xf provides an isomorphism

(
L+dR,∆ ⊗A

(0,r]
K,∆

D(0,r](T )
)
f

∼
→D+

dif(V )

and it remains to show that
(
L+dR,∆ ⊗A

(0,r]
K,∆

D(0,r](T )
)
f
= l+dR,∆ ⊗A

(0,r]
K,∆

D(0,r](T ). As D(0,r](T ) is projective of finite rank over A
(0,r]
K,∆, it is enough

to show that D(0,r](T ) is mapped to D+
dif(V ) by in,∆. By [20, Lemma

3.2.4], we have D†(T ) = A†
F0,∆
⊗A

†
F0,∆,◦

(
A†

∆,◦ ⊗Zp
T
)HK,∆ : similarly, we

have D(0,r](T ) = A
(0,r]
F0,∆
⊗

A
(0,r]
F0,∆,◦

(
A

(0,r]
∆,◦ ⊗Zp

T
)HK,∆ , so we are reduced to

check that
(
A

(0,r]
∆,◦ ⊗Zp

T
)HK,∆ maps to D+

dif(V ) by in,∆. Working compo-
nentwise, this follows from [5, Proposition 5.7]. □
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