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Sen theory and
p-adic differential equations

OLIVIER BRINON, BRUNO CHIARELLOTTO, AND NICOLA MAZZARI

Let K be a complete valued field extension of Q, with perfect
residue field. We consider p-adic representations of a finite product
Ggna= G% of the absolute Galois group Gx of K. This prod-
uct appears as the fundamental group of a product of diamonds.
We develop the corresponding p-adic Hodge theory by constructing
analogues of the classical period rings Bqr and By, and multivari-
able Sen theory. In particular, we associate to any p-adic represen-
tation V of Gk a an integrable p-adic differential system in several
variables Dgis (V). We prove that this system is trivial if and only
if the representation V' is de Rham. Finally, we relate this differ-
ential system to the multivariable overconvergent (¢, I')-module of
V constructed by Pal and Zabrddi in [20], along classical Berger’s
construction [5].
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1. Introduction

Let K be a finite extension of Q,, Gk its absolute Galois group, and A
a finite set. After the work of Scholze and Weinstein [25], [2I], the finite
product G A = G[A( can be understood as the fundamental group of a
diamond: the product XA Spd Q, =5pdQ, x -+ x Spd Q,, (this diamond is
not associated to a perfectoid space). It is then natural to consider p-adic
representations for this fundamental group, viewed as coefficients for the
diamond x A Spd Q,,. Hereafter, we work in a slightly more general context:
we assume that K is a complete discretely valued extension of Q,, with
perfect residue field.

Of course the study of such representations can be considered in the
classical framework of p-adic Hodge theory as developed after the work of
Fontaine (¢f [16], [22], [8]), i.e. in terms of period rings and (p, I')-modules.
This second approach has been pursued in recent works by Zabradi, Pal,
Kedlaya and Carter ([26], [27], [20] and [12]) in terms of multivariable (mul-
tivariate) (¢, I')-modules associated to p-adic representations of G a.

In this article, we develop a multivariable Sen theory in this framework,
and construct multivariable (multivariate) p-adic period rings Bqr a and
But,a. To any p-adic representation V' of Gk A, we associate an integrable
differential system Dgis(V') in several (= #A) variables. We prove that this
system is trivial (i.e. has a full set of solutions) if and only if the Gk a-
representation V' is de Rham. Moreover, we relate the differential module
Dgif (V) with overconvergent (¢, I')-module arising from Pal-Zabradi theory

(cf [20]).

Before giving a precise description of the content of this article, we make
some remarks and thoughts for future developments. First of all, we note
that the theory we develop here does not fit in the framework of relative
p-adic Hodge theory as studied by Andreatta, Brinon ([1], [2], [3], [9]). In
fact the geometric base for our objects is merely a finite discrete space (cf
Remark. Secondly, this article should be seen as a first step towards the
introduction of the multivariable periods rings B¢.is and By, and eventually,
a step in the direction of full analogue of Berger’s results via the theory of
p-adic differential systems in several variables (as was foreseen in [20)]).

We now describe more precisely the content of this work. In the second
section we fix some notations and recall useful results. In particular we re-
call classical Sen theory of C-representations, where C' is the completion of
an algebraic closure of K, and introduce the completion Ca of the tensor
product of the #A-fold tensor product of C over the maximal unramified
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subextension of K. In the third section we study free Ca-representations of
finite rank of Gk a: more precisely, we develop an analogue of Sen theory
in this context. Classically (i.e. when #A = 1) Sen theory is an equivalence
of categories between C-representations of G and K.-representations of
'k = Gal(K«/K), where K is the cyclotomic extension of K. Our result
in the multivariable context is Theorem [3.28 there is an equivalence of cat-
egories between that of free Ca-representations of finite rank of Gx A and
that of free KA o-representation of finite rank of I'k A, where K o is the
(non completed) #A-fold tensor product of K., over the maximal unrami-
fied subextension of K. To the latter we can associate generalized Sen oper-
ators (describing the infinitesimal action of I'x o) and develop a Hodge-Tate
theory (cf Corollaries and . In the fourth section we introduce the
period rings Bqr A and Byt a and the corresponding de Rham and Hodge-
Tate representations: in particular we show that there are functors Dgr and
Dyt having the expected properties (Propositions |4.17} [4.18| and [4.19)), in
particular that being de Rham implies to be Hodge-Tate. In the fifth section
we prove the multivariable analogue of the work of Fontaine in [I6]: namely
Sen theory for Bggr a-representations. To do this we follow [3]: the central
result (Theorem D is that the category of free B(J;R’ A-representations

of finite rank of Gk A is equivalent to that of free IXR A = Kao[ta]aea-
representations of finite rank of I'x A (where ¢, is a p-adic 2im correspond-

ing to the action of the factor of index o in Gk A). By inverting [] to, we

aEA
deduce the analogue for Bqg A (Theorem [5.12)). The upshot is that we can

associate a free module Dyis (V') with a regular, integrable connection in #A
variables with coefficients in lqr, A = I(J{R A[i]a A to any p-adic represen-
tation V' of Gk a. This is the analogue to that introduced by Fontaine in
[16], and used by Berger in [5]. In particular, we show that a p-adic repre-
sentation V of Gk A is de Rham if and only if the associated module with
connection Dy (V) is trivial (Proposition , and relate our construction
to that of overconvergent (¢, I')-modules developed by Pal-Zabradi (c¢f [20])

and Carter-Kedlaya-Zébradi (¢f [12]) by an analogue of [5, Corollaire 5.8]
(¢f Theorem [5.23)).

Remark 1.1. There is little doubt that a general Tate-Sen formalism (such
as that of [2]) does exist in the multivariable case, and that could be applied
to families of multivariable representations (as for [0, §3] and [6l, Proposition
5.2.1]). This said, we proceed here with Tate-Sen descent by hand (this
already contains most of the necessary ideas).
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2. Notations

Let K be a complete discrete valuation field of characteristic 0, with per-
fect residue field k of characteristic p > 0. Fix an algebraic closure K of K
and let Gk = Gal(K /K). Denote by v the valuation on K normalized by
v(p) = 1. It extends uniquely to a valuation of K : let C' be the completion
of the latter. If F' is a subextension of C/K, we will denote by Op (resp.
mp) its ring of integers (resp. its maximal ideal). By continuity, the action
of G extends to C. Fix € = (¢(),en a compatible system of primitive
p"-th roots of the unity (i.e. such that e =1, e £ 1 and (¢+D)P = £(7)

for all n € N). For each n € N, put K, = K(¢™) and let Ko, = |J K,
n=0

be the cyclotomic extension, and L = I/(:o its completion with respect to
v. Put Hg = Gal(K /K+) and T'y = Gal(K/K). The cyclotomic charac-
ter x: ' — Z; is characterized by 'y(e(”)) = (5(”))X(7) for all v € I'k: it
induces an continuous isomorphism between 'y and an open subgroup of
Z, . We still denote x the composite G — I'x X, Z; . In what follows, co-
homology will always refer to continuous cohomology.

Using ramification estimates, Tate proved in [24] that H'(Hg,C) =

L ifi=0
ne and constructed the so-called Tate’s normalized traces

0 ifi>0
(Rn: L = Kp)p>n, (for some integer nx € N), that he used to show
: 1 ifs 0,1 ,
that dimg Hi(Dg, OHx) = {01} 0 that dimg (G, C) =
0 ifi>1
1 ifie{0,1}
0 ifi>1

Recall that Tate’s normalized trace map R,: L — K, induces the map
T p% Ter/Kn(sc) on K,, for all m > ng.

Proposition 2.1. (cf [2]), §3], [0, §3.1 & Proposition 4.1.1] and [11, Propo-
sition 14.1.6]) These maps have the following properties:

(i) Ry, is a Ky-linear projector onto K, : put X, = Ker(ld —R,,) C L;
(ii) R, commutes to the action of T'k;

(ili) (Ve2 € Rso) (Vo € L) vp(Rn(z)) > vp(x) — c2 (in particular Ry, is con-
tinuous);

(iv) (Vz e L) nh_)rréo R, (z) = x;



Multivariable de Rham representations 29

(v) forallcs > 1%’ there exists ny > nx such that for alln > n andy €
Tk such that vy(1 — x(v)) < nlg, then v — 1 is invertible on X,,, and
for all x € X,,, we have vy((y —1)"Y(x)) > v,(z) — c3 (in particular,
v — 1 induces an homeomorphism from X,, to itself).

In what follows, we will use the previous properties with co = c3 = 1.
This is certainly not optimal, but for technical reasons, it is much more
convenient to make computations and work with O¢, /(p) (¢f infra) rather
than with quotients by elements of non integral valuation.

Let d € N+. Based on the work of Tate, Sen showed in [22] that the set
HY(Hg, GL4(C)) is trivial, so that the inflation map

H'(Tx, GLa(L)) — H' (G, GLa(C))
is bijective. He also proved that the natural map
H' (T, GLa(Ko)) — HY (i, GLg(L))

is bijective. This means that if W is a C-representation of Gg (cf ,
there exists a K-representation Wy, of I' such that W ~ C @k W, as
C[G k]-modules.

As mentioned in the introduction, the first aim of this note is to gener-
alize these results to the case where G is replaced by a finite power of G
(along the lines of [20]).

Let A be a finite set, and put 6 = #A. Put Ggka = [[ Gk, Hxka =
a€A
[I Hk, and Tk o = [] T'x. We have an exact sequence
aEA acA

1— HK,A — GK,A X—A> FK,A — 1.

The morphism xa = [] x identifies I'fr A with an open subgroup of (Z,; A,

aEA
II a€ A, we denote by Gk, the image of the group homomorphim
to: Gk — Gk, A that maps g to the element whose component of index « is
g and the others are Idz. The groups Hg , and I'  are defined similarly.
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Notation. (1) If n = (n4)aca € Z*, we define a character x’x: Gx.a —
Z; by
X ga cxeA H X ga

aEA
This provides a Z,-representation Z,(n) of Gk a. More generally, if M is a
Z,-module endowed with an action of Gx A, we put M(n) = M ®z, Z,(n),
endowed with the diagonal action of G A.
(2) If F is a closed subextension of C'/Fy (where F := W(k) [1]) let Op, be
the p-adic completion of the tensor product Op Qi ) - ®w(k) OF (where
the copies of Op are indexed by A), and FAo = O FAE ] Observe that when
F/Fy is finite, OF is a free W(k)-module of finite rank, so that the tensor
product OF @w (k) - - @w(k) OF is p-adically separated and complete, so that
Fa is nothing but the tensor product F®A = F ®F, - ®@p, F (where the
copies of F' are indexed by A).

Remark 2.2. (1) The ring O, depends on k. This dependence is not
indicated in the notation so as not to make it heavier.
(2) When it is not mentioned, tensor products are taken over W(k).

The group Gk, naturally acts on O¢, and Ca. Note also that Oy, is
naturally a (’)?}i—algebra.

3. Multivariable classical Sen theory
3.1. The cohomology of Ca

Lemma 3.2. Let r € Nsg. Then the cokernel of Or,/(p")—
HO(Hga,Oc,/(P7)) s killed by m}e}i. If >0, the group
Hi(Hg,a,Ocy/(p")) is killed by mP>

Proof. If A" C A, we denote by O, ,, the p-adic completion of O¢,, Qw (k)

OLa\ - In particular, we have Oc, , = Or, and Oc, , = Oc,.-
We proceed componentwise: let A’ C A and a € A\ A’, and consider the
action of H o on Oc, .,/ (P"). The topology on the latter is discrete: we

have

H' (HK 0, O aroey/(07)) = i ' (Hic 0, OF.a @wik) OCis,ay,a0/ (1))
F

where F' runs among the finite Galois subextensions of K /K. Recall
that by [24, §3.2, Proposition 9], we have mg  C Trp g _(OF) for every
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such F. This implies that H(Hg o, Opa Qw) OCa(ay.a/(P7)) s Kkilled by
mg_ o for all F (¢f [19, Lemma 3.1]): the same happens, for i >0, to
HZ(HK@!? OCA,A’U{Q}/(pT))' If v € HO(HK,OH OF,a ®W(k) OCA\{Q},A’/(pT)) and
N E Mg o let y € Op such that Trp/k_(y) = n. Then ne = Trp/k_ o(7y) €

OCA,A’/(pT)’ where TrF/Kooya: OF,OZ ®W(/€) OCA\{Q},A//(pT)) - OCA,A’/(pT)
denotes the tensor product of Trp i on the factor of index o with the
identity on the other factors.

The lemma follows by applying the Hochschild-Serre spectral sequence
finitely many times. g

. L ft1=20
Theorem 3.3. We have H'(Hg A, Ca) = A ZfZ .
0 ifi >0

Proof. By [18, Proposition 2.7.4], there is a commutative diagram with exact
rOWS

. O = X 0L (1) O
04>£%n ) 1;[ rl;ll ) %n ) —0

N

o=t (Ge5)" I (55)™ 1 (53)"" —m® (§5)" o

The first three vertical maps are injective and the cokernels of those in the
middle are killed by m . This implies that the cokernel of the first vertical
map is killed by m% K ThlS implies that the cokernel of composite map

Op, = OpF* = 1im(O, /(p")) 2

is killed by m?}i, showing (by injectivity of the second map) that the cokernel
of

Or, = H (Hg A, Oc,)

is killed by m?}A On the other hand, the inverse system {Op,/(p")}, has
the Mittag-Leffler property: we have L )Op,./(p") = 0. This implies that

gl(l)(OcA/( ")) s killed by m®A

T
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If i > 0, we have an exact sequence (c¢f [18, Theorem 2.7.5])

0 — lim OHY(Hga, Oc, /(07))

— H'(Hg,a, Oc,) — mH'(Hg,a, Oc, /(p7)) = 0.

By Lemma (and what precedes when 4 =1) the modules
lim WH (Hia, Oc, /(p7) and im HY (H i ., O, /(p7)) are killed by mi2,
T T
implying that H'(Ha, Oc, ) is killed by (m}e}i)Q = m}e}i
The proposition follows by inverting p. U

Notation. If A’ ¢ A and n € N, we denote by OL, s, the p-adic comple-
tion of O, ., ®wk) Ok, - In particular, we have Or, , , = Ok, A and
OLan, =O0r,. Put Lan =01, . [%] Let n > ng: the map R, in-
duces a continuous map Op — %OKH- If a€ A, denote by Ry o: La —
LA A\{a},n be the map induced by the tensor product of Tate’s normal-
ized trace R,: L — K, (cf [24, §3]) on the factor of index a with the
identity on the other factors (this makes sense by the continuity of R;).
This defines a continuous La ﬁn—linear projector that maps Or, ,, . into
1)

o
%OLA,A/U{Q},TL (¢f Proposition [2.1). We also put Oy, ,, = = Uo OLa A, and
n=

oo
Lanoo= U Laain.
n=0

Theorem 3.4. We have

H' (a0 Ca) = Hi(Tia, La) = A (6D Kalog(xa) )-

aEA

Proof. The first isomorphism follows from the inflation-restriction exact se-
quence. For all n € N, the map Ka — K, A is finite étale, it is enough to
prove the statement replacing K by K, with n > ng (¢f above). Then the
Horschild-Serre spectral sequence reduces the proof of the second isomor-
phism to the equalities

' LA,A’U{a},n le =0
Hl(PKn,a7 LA,A’,n) = LA,A/U{a},n IOg(Xa) ifi=1
0 ifi>1
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for all @ € A and A’ C A\ {a}. Working modulo p" as we did in the proof
of Lemma and using the maps R, for m >n, we deduce that the
cokernels of the maps

OLpa /() = H Tk, .. Laan/ (@)
OLaar. /() 10g(xa) = H (T, .. La,an/ (7))

are killed by p, as do the elements of H' (T, ., La,a'n/(p")) if i > 1. Then
we can pass to the limit arguing as in the proof of Proposition[3.3|to conclude
that the cokernels of the maps

OLA,A',H - HO(FKn,a7LA7A/7n)
OLa a o log(xa) = H' Tk, ., La,arn)

and the modules H'(T', ., LA Ar,n) With ¢ > 1 are killed by p. The theorem
follows by inverting p. O

Theorem 3.5. Ifn € N and n € Z>\{0}, we have H(Gg.a,Ca(n)) =0
for all v € N.

Proof. Again, using the inflation-restriction exact sequence and the
Horschild-Serre spectral sequence, we are reduced to show that if a € A is
such that n, # 0, then the cohomology groups H (T o, La(n)) all vanish.
Let v € I'k o be such that the closure W has finite index in 'k : it is enough
to show that H((y4), La(n)) = 0 for all i € N, where 7, € T'g A is the ele-

ment whose components are the identity except that of index «, which is ~.

As these cohomology groups are those of the complex La(n) ﬂ) La(n)
(concentrated in degrees 0 and 1), this is equivalent to showing that v, — 1
is bijective on La(n), i.e. that it is injective with cokernel killed by p" for
some 7 € N on O, (n). This follows from the fact that v — 1 is injective
with cokernel killed by p" for some r € N on Op(n,), since it is bijective
with continuous inverse on L (¢f Proposition (v)). O

3.6. Sen theory for Ca-representations

We fix terminology and notation that will be used hereafter.

Definition. Let G be a topological group and B a topological ring endowed
with a continuous action of G. A B-representation of G is a topological
module of finite type W endowed with a continuous and semi-linear action of
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G, i.e. such that g(w1 + bwa) = g(w1) + g(b)g(ws) for all b € B, wi,we € W
and g € G. We say that W is free (resp. projective) of rank d when the
underlying B-module is. We denote by Repg(G) (resp. Repk(G), resp.
Rep': (G)) the category of B-representations with G-equivariant maps (resp.
the full subcategory of free, resp. projective B-representations of finite rank).

Remark 3.7. If W is a free B-representation of rank d of GG, and 8 is a
basis of W over B, we can denote by U, € My(B) the matrix of g acting on
W in the basis B. Then U, € GL4(B) for all g € G, and the map g — Uy is
a continuous 1-cocycle G — GLg4(B). Conversely, the data of such a cocycle
endows B? with a B-representation structure. Moreover, changing the basis
precisely amounts to replace the cocycle by a cohomologous one. This means
that isomorphism classes of free B-representations of rank d are in bijection
with the continuous cohomology set H'(G, GL4(B)).

Fix d € N+¢. Let Hy < Hg be an open normal subgroup, and put Ha =

[T Ho. If A" C A, let Haa be the subgroup of Hgi A generated by the
aEA
subgroups to(Hp) for a € A’: we have Ha o = {1} and Ha o = Ha. Note

that although the groups Ha and Ha A depend on Hy, we do not indicate
this dependency in order not to make the notations too heavy.

Lemma 3.8. (¢f [22, Lemma 1] and [2, Lemme 2.1]) Let U: Hx —
GL4(CAa) be a continuous cocycle. Let A" C A, av € A\ A" and m € N>g be
such that Uy, =14 for all h € Ha ar and Uy, € 15 +p™ My (Ogﬁ') for all h €
Hna. Then there exists By € I;+p™ My (ng) such that Bathh(Bo) €

Ig+p™ ! My (OgAAA) for all h € 1o (Hy).

Proof. By continuity of U, there exists an open normal subgroup H; < Hy
such that Uy, € I5+p™T2 My ((’)gAA'A/) forall h € 1o(H1). Let T be a complete
set of representatives of Hy/Hy ~ 1o(Hy)/to(H1): if h € 1o(Hp) and 7 € T,
there exists unique h’ € 1o(H1) and 7 € T such that hr = 7'h’: we have

Uie = Unie = Unt'(U) € Uz ™2 My (1),

By [24, §3.2, Proposition 9], we can choose ¢ € Ogl such that Try, /g, (¢) ==
> 7(c) = p. Put

TeT

By = % ZT(CQ)UT € My (CfA’A')
TeT
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(where ¢, € O¢, is the image of the tensor 1® - ®1®c®1®---®1,
with ¢ on the factor of index ). As U; € I;+p™ My ((’)gj’”) forall T €T,

we have By € I;+p™ 1 My (OHAA A’) This implies in particular that By is
invertible in I;+p™ ' My ((’)CAA’A'), with BO_1 Z(Id —By)*. Moreover, if

i=0

h € 1o(Hp), we have

—IZtha —1ZthaU Upr

TeT TeT

_1U IZThICa /h/lelz ’h’

TeT TeT

As Uy € Upr 4 pmH2 Md(O "), we have

Unh(Bo) € 13" 7' (ca)Un +p™ T My (O£2)

A
TeT

=B,
hence By Uhh(Bo) € Iy +p™t My ((,)HA A,). -

Lemma 3.9. Under the assumptions of Lemma [3.8, there exists By €
Iy +p™ 1 My ((’) &4") such that the cocycle U: Ha — GLg(Ca) defined by
Ul == B 'Uph( a) is such that Uj =1g for all h € Hx anugay and U €
La+p™ " My (052 for all h € Ha.

Proof. Lemma produces inductively a sequence (Bj),>0 in
Ii+p™ "My ((’)CAA'A') and a sequence of cocycles (Un: H —
GLy (CA**')) ., such that B, € Ly+p™™ 1My (05>, Uy =U,
Uni1n = By Uy ph(By) for all h € Ha and U, € Iy+p™™ M, (OHA'A')
for all h € 1,(Hp) and n € N. The infinite product B, = ByBj--- con-
verges in Ig+p™ 1 My (ng’A/): for h € Ha, put U; = B;thh(Ba). By
construction, we have U; = I for all h € 1 (Hp).

If h € Haar, we have h(By) = B, and Uy, = I; hence U} = I;. This shows
that U; = I4 for all h € Ha arufa)-

If peA\(A'U{a}), h€n(Ho) and n € 13(Hp), we have hn=nh, so
U,hU;) = Uﬁ/]n(U;L): as U =14, we get h(U))=U,. This implies that
Uy € GLg (Cp27),
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As B, € Ij+p™ 1My ((ng‘A') and Uy, € I;+p™ My (Ogj”), we have
_ m— HA.A’
U, = By 'Uph(By) € 1g+p™ " Mg (O 2*)
for all h € H. O

Proposition 3.10. (¢f [22, Proposition 4], [2, Proposition 2.2])
Let U: Ha — GLg(Ca) be a continuous cocycle such that Up =1y
mod p" Mg(Oc¢,) for all h € Hx, where r € N>s1. Then there exists B €
Iy +p" 0 My(Oc,) such that B~ Uyh(B) =14 for all h € Ha. In particular
U has a trivial image in H(Ha, GL4(Oc,)).

Proof. Using Lemma this follows inductively from the case A’ = & and
m = r, working componentwise. [l

Corollary 3.11. (cf [2, Corollaire 2.3]) The maps

lim H'(Hga/H,GLy(CK)) = H'(Hk,a,GL4(Ca))

H<Hg A
H open

lim  HY(Gka/H, GLy(CK)) = H'(Gk,a,GLa(Ca))
H<Hg A
H open

induced by inflation maps are bijective.

Proof. The second statement follows from the first one. Let U: Hg A —
GL4(Ca) be a continuous cocycle. By continuity, there exists an open normal
subgroup H < Hg A such that Uy, € Iy +p2t Mg(Og¢,) for all h € H. Mak-

ing H smaller if necessary, we can assume that H = [[ Hp where Hy < Hg
aEA
is an open normal subgroup (note that such subgroups are cofinal among

open normal subgroups of Hx A ). Proposition shows that the cocycle we
started with has a trivial image in H*(H, GL4(Ca)). The inflation-restriction
exact sequence of sets:

{1} - H'(Hka/H,GL4(CX)) — H' (Hk A, GLa(Ca)) — H' (H,GL4(CA))

(¢f [23, I, §5.8]) shows that U is the induction of a unique class in
HY(Hg,a/H,GLa(CR)). 0

Let Hy < Hg be an open normal subgroup. By [4], the field CHo ig the
closure of K*Ho, The latter is a finite extension of KHx = K. If z is a
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primitive element for K o /Ko, there exists n € N such that x is algebraic
over K,: if we put K’ = K,(z), then KHo = K!  and C° = [/ := K/_.

In particular, if H = [[ Hop, we have Cg = L'\ by Theorem [3.3| In what
a€A
follows, we denote by R}, ., the generalized normalized Tate traces relative

to K’ (¢f |24, §3] and Proposition 2.1)).
Fix A"C A, a€ A\ A" and n > n/,. The topological decomposition
L' = K], ® X, (where X], = Ker(R))) gives rise to the topological decompo-
sition
/A,A’ = L/A,A’U{a},n D Ker(R;“L,a)‘

Moreover, if v € T' 4 is such that v,(1 — x(7v)) < nl., then v — 1 is invert-
ible on Ker(R,, ), and for all z € Ker(R], ,) N O, ,, we have (y — D~ (z) €

n,o
%OLIA,A/ (¢f Proposition .

Lemma 3.12. (¢f [22, Proposition 3/, [0, Lemme 3.2.5]). Let
Y €Tk o such that vy(1—x(7)) <n. Assume B € GLy(Ly o)) and
Vi, Vo € Iy +p% My (OL/A A,Um_n) are such that ~(B)=V1BV,. Then

B e GLd(L/A,A’U{a},n) .

Proof. Put Z = B — R;, (B) € Mg(Ly a/): as Ry o is Ly A'U{a}n-linear and
commutes with the action of ' o, we have v(Z) = V1 Z V5, hence

VZ) = Z=WiZVs— Z = (Vi =1)Z + ViZ(Va = 14) — (Vi = 15) Z (V3 — 1)

It Z € p*My (OL'A A,), this implies that (v — 1)(Z) € p**2 My (OL'A_A/)' As
Z has entries in Ker(R;%a), this implies that Z € p*tt My (OL'A A,). This
shows that Z = 0, 4.e. that B has entries in L/A,A/u{a},n' O
Lemma 3.13. (c¢f [22, Lemma 3], [0, Lemme 3.2.3]). Let a,b &€ N be
such that b > a > 2 and v € 'k o such that v,(1 — x (7)) < n. Assume U =
Ig+p*Us erbUQ with U; € My (OL/A Aoy n) and Uy € My (OL/A A/). Then

there exists V € My (OL’A A/) such that M~U~(M) = 1g+p*Vi + pT1V;,
with Vi € Mg (O and Vo € Mq (Or, ), where M =Tq+p"~'V.

ATA/U{Q},’E)

Proof. We can write Us = R}, ,(Ua) + %(1 —7)(V), where V € My ((’)L/A A,)

has entries in Ker(R}, ,). Then we have M~! = % PO DVI €1, —pP~ 'V +
j=0

PP My (OL’A,A/) (because 2(b—1) > b+ 1 since b > 3 by hypothesis), so
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that

M™'U~N(M) € (g —p" 'V)U Iy 40" 9 (V)) + " My (01

A,A’)

eU—p" (VU —Ux(V)) + 9" Ma (O, )

We have U €I;+p*>My (OL'A.N) (because b>a > 2), so that VU —
Uy(V) € (1 —~)(V)+p*My (OL/A.A’). This implies that

M7YU~N(M) € U —p" 11— y)(V) + p" My (O

€ ly+p*Us +pb(R;L,a(U2) + %(1 -7)(V))
P A= N(V) + P M (O )
€ Iy +p™ Vi + 9" My (01

A,A')

with Vi = U1 +p" R}, ,(U2) € Mg (Ory, , ). O
Corollary 3.14. (c¢f [22, Proposition 6], [6, Corollaire 3.2.4]). Let
a>2, Uel;j+p*My (OLIA.A’) and v €Tk o such that vy(1— x(v)) <
n. Then there exists M € I;+p* ' My ((’)L/A A/) such that M~1U~(M) e
Iy +p* My (OL/ )

AN U{a},n

Proof. Using the previous lemma inductively, we can construct a sequence
of matrices (Mjp)p>q such that M, € Iy +p*~1 My ((9,;«A N ) and

’

(MaMa+1 e 'Mb)_lU’Y(MaMaJrl T Mb)
€ Ig+p* My (O

A, A'U{a},n

)+ M (On )

e8]
for all b > a. The infinite product [] M, converges in Iy +p® ! My (OL/A A,)
b=a ’

and has the required property. O

By definition, we have inclusions
! / !/ / /
KyA=Lagn CLaanCLaan=La

for all n € N, hence inclusions

D
/ . / 7/ / /
K o = U Ky A=LAgo CLaA o CLa
n=0
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for all A" C A. We put Og;, = U Ok -
: o :

Corollary  3.15. (¢f [6, Proposition 3.2.6]). Let U: I'k:n —
I +p* My (OL’A N oo) be a continuous cocycle. Then there ex-
ists M € lg+p I\/Id ((’)L/ oo) such that for all g€ Tk A, we have

1Ugg( ) c Id —|—p2 Md (OK' A,U{a}m).

Proof. As T K/ A is topologically generated by finitely many elements, there
exists n > nl, such that U, € Iy +p? My (OL/ ) for all g € I'gs A. Let
v €Tk o be an element of infinite order. Enlargmg n if necessary, we
may assume that v,(1 — x(v)) < n. By Corollary |3 there exists M €
Ig+p My (OL/A N n) such that M_lU’y’)/()(M) cely+p M (OL/A AUfa)m )

For all g € I‘K;,AY, put U} = M~Uyg(M): this defines a cocycle U': T A —
Iy +p? My (OL/ ,n) which is cohomologous to U, and such that U,’Y €
I;+p> My (OL’A A,;{ . ) Let g € '/ a. As T'gr A is commutative, we have
vg = g7 hence U ( %) Urg(U)) i.e. 4(U;) = U U g(UY). Lemma
applied with V; = and V5 = g(U!) (here he use the fact that La arufa},n
is stable by g, Wthh follows form the commutativity of I'x: ) im-

plies that U; has coefficients in L', A'Ufa}ne SO that U’ has values in
2

Iy +p* My (OL’A Aoer, ) O

Corollary 3.16. Let U: ' p — Iy +p? My (OL/A) be a continuous co-

cycle. Then there exists B € 1;+pMy (OL’A) such that B~'U,g(B) €

I; +p2 Mg (OK/A,OO) forall g € T'r A

Proof. This follows by using Corollary finitely many times. g

Proposition 3.17. (c¢f [6, Proposition 3.2.6]). Let U: Gga — GLy(Ca)
be a continuous cocycle. There exist a finite subextension K' of K /K,
a matriz B € GLq(Ca) such that B~'Uyg(B) =14 for all g € Hir a and
B~ 'Uy9(B) € GLy (Oky,) for all g € Ggra

Proof. By continuity, there exists a finite Galois subextension K’ of K /K
such that, for all g € Ggra, Uy € Ig+p*° My (Oc,)- Proposition
applied with Hp= Hg, and r =24 implies the existence of B €
Iy +p? My (OCA) such that B;thh(Bl) = Igforall h € Hg' A. By construc-
tion, we have U; = Bl_lUgg(Bl) =I;+p> My ((’)(;A) for all g € G a. Let
g€ Gra and h € Hgra. As Hg A <G a, we have b/ = g7 hg € Hgo a,
so that Uy h(Uy) = Uyg(Uy,) i.e. h(U,) = Uy (since U; = U}, = 1). As this
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holds for all h € Hg+ a, this implies that U, € My (C’i{K"A) = Mq(Ly) (¢f

Theorem . This shows that in fact, we have U, € GLd(OL/A) for all
g € Gk a, and that, in particular, the restriction of U’ defines a continu-
ous cocycle U': T A — 1 +p? My (OL/A) C Gly (OL/A).

By Corollary there exist By € I5+p My ((’)L/A) and n € N such that,
for all g € Tgra, By 'Ujg(Ba) € Ig+p* My (O ). Replacing K’ by K,
we may assume that K/ = K'. Put B = ByB; € GLy(Ca) and U;’ =
B~lU,g(B) for all g € Gk a. By construction, we have U, =14 for all
g c HK’,A and Ug ely +p2 My (OK’A) for all g < GK’,A-

Let g € Gga and v € Ggra. As K'/K is Galois, we have Gg A < Gk a,
so that 7/ := g71vg € Gk a. By the cocycle condition, we have (U,) =
U Uy9(U,). A repeated application of Lemma (for each o € A) thus
implies that U, € GLg4 (OK/A) O

Corollary 3.18. (c¢f [2, Théoréme 3.1]) The natural map

@Hl(GK,A/HK,,A, GL4(K%)) — HY Gk, GLi(CA))
K/

(where K' runs among the finite Galois subextensions of K /K ) induced by
inflation maps is bijective.

Proof. Surjectivity is nothing but Proposition [3.17 it remains to
prove the injectivity. Let K’ be a finite subextension of K/K and
UU": Gka/Hg'.an — GLy(K\) be two continuous cocycles that induce
cohomologous cocycles G A — GL4(Ca). This means that there exists
B € GLg(Ca) such that U, = B~'Uyg(B) for all g € Gxa. By continu-
ity, we may enlarge K’ and assume that Uy, U} € Ig+p® Mg(Og+a) for all
g€ Gga If g€ Higr A, we have Uy, Ué = Iy, so that g(B) = B: this shows
that B € GLq(L)), where L' = CHx'. Then we have (B) = U;'BU, for
all v € Gxa/Hg' a. Applying Lemma finitely many times (for each
o € A) shows that B € GLq(K7 ). Replacing K’ by K, for n € N large
enough implies that U and U’ are cohomologous as cocycles with values in
GLg(Ky), proving the injectivity. O

We now refine the previous statement by translating it in terms of Ca-
representations of G A.

Theorem 3.19. (cf [22, Theorem 3]). Let W be a free Ca-representation
of G, of rank d. Then there exists a free Ka o-representation Y of I' A
of rank d and such that W ~ Cx @k, . Y (as Ca-representations of Gk A ).
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Proof. Corollary implies that there exists a finite Galois subextension
K' of K/K and a free K)\-representation of rank d of Gx a/Hg A such
that W ~ Ca ® g, W' as Ca-representations of G a. Enlarging K’ if nec-
essary, we may furthermore assume that K’/ Fy is Galois. By restriction, the
group Gal(K. /K. ) identifies with a subgroup G = Gal(K'/K' N K) of
Gal(K'/Fp). Put F = K'Y = K' N K. Note that G is the kernel of the map
Gal(K'/Fy) — 'k induced by the restriction to Koo: this implies that F/Fj
is Galois. If A’ C A and a € A\ A’, the finite Galois extension F — K’
induces a finite étale extension

Fastey @k Kayarugay) = Far @k Kja

with group G,. By Galois descent, if W, is a rank d projective Far Q
A\A,—representatlon of G, then WGQ is a rank d projective Fa/(a) ®K
KA\(A’U{O:}) -module of finite rank and the natural map

(Far ®K Kpar) @Fa 0y 0x K. WS — W,

A\(a’u{a})

is an isomorphism. Starting from W’ and applying what precedes for each
a € A implies that W’C is a projective Fa-module of rank d, and that the
map

K\ ®p, WG 5w’

is an isomorphism. As F/Fy is finite and Galois, Fa is a finite product of
copies of F' (indexed by Gal(F/F,)°~1), so that a projective Fa-module is
necessarily free of rank d (the dimension over F' of all its localizations is
d, since it is free of rank d after tensoring with Ca). Then we have Gk A-
equivariant isomorphisms

W ~ Ca ®K/A W'~ Ca QFa VV/GA ~ Cha OKa o Y

where Y = KA o ®F, W'Ga is a KA o-representation of I'i o which is free
of rank d. O

Corollary 3.20. If W is a Ca-representation of Gk a, then WHka s q
free La-representation of I'g A of rank d, and the natural map

CA ®p. whHra 1y

is a G g a-equivariant isomorphism.
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Proof. By Theorem [3.19 we may assume that W = Ca ®k_, , Y where Y ia
a free Ko, a-representation of I'g A of rank d. Then WHra = [ QK.Y
is a free La-representation of 'k A of rank d, and the natural map Ca ®p,,
WhHra 5 WisaG K,A-equivariant isomorphism. O

Corollary 3.21. (c¢f [22, Theorem 1]) The natural map
H Tk ,a, GLa(KA o)) = HY(GK A, GL4(CA))
is bijective.

Proof. Here again the surjectivity follows from Theorem [3.19] and the injec-
tivity is proved exactly as in the proof of Corollary O

Proposition 3.22. If £ C La is a sub-Ka-module of finite type stable by
T, then € C Ka o (more precisely, there exists n € N such that € C

Kpn).

Proof. Enlarging K, we may assume that K/Fp is Galois, with group G/, -
The map

K ®p, K — K%</r0
TRY — (xo-(y>)UEGK/FO

is an isomorphism of K-algebras (with the left structure on the LHS, and
the diagonal structure on the RHS). Fix an ordering a; < ag < - -+ < ag of
A: by induction, what precedes provides an isomorphism of K-algebras

~ Go-t
t: KA — K7 5/F

where the component of index g = (09,...,05) € Gif_/}o of t(x; ® -+ ® x5)
is given by

zy109(x203(x3 -+ x5_105(xs) - - +)

(here the K-algebra structure on the LHS is through the factor of index
a; and that on the RHS is the diagonal one). For each o € Gig/}o, we
thus have a surjective morphism of K-algebras ty: Ka — K correspond-

ing to the projection onto the f&ltctor of index ¢. Similarly, we have an

C . G, . C .
injective map too: KA 00 — Ko J=/"  that extends into an injective map
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5— G671
ot La — L%/ (because (o, maps (’)KAoo into O, /™ which is p-
adically separated and complete). Let o € Go-
ization, so that the natural map

K/F the map (s is a local-

Tooo: K, @Ky La — H L

A’/EGKoo /Fo
7’—>Q

is injective. Note that if g = (g1,...,9s5) € T'ka and z1,...,25 € K, we
have

o (9(x1® - @ 25)) = oo (91(21) @ -+ @ gs(w5))
= (91(x1)72(92(22)73(93(w3) - - 95-1(25-1)75(95(26))) ) e

Koo /Fo

:(g1<x1(gf17292)(562(92_17393)(903 (95217695) (25) -~ ))> cqit

Koo /Fo

This shows that 1o, is I'x,a-equivariant when the I[I L is equipped
G(i 1

Koo /Fo
o

with the action given by

g (2y)y = (91(z gz))w
where gy = (97 9292, 95 1393, -+ 95 17698) € Gy if 7 = (25--,%)
(note that this indeed maps to ¢ if v does).

By hypothesis, the localization &, := K, ®k, € is a finite dimensional
sub-K-vector space of K, ®KA LA that is stable under the action of I'rA.
If Yo = (y2,...,7s) € GK IRy the projection pr, oleg: K, @K, La — L
onto the factor of index 7, maps &, onto a finite ‘dimensional sub-K-vector
space 57 of L. Moreover, if g € 'k, define the element g = (g1,...,9s) €
FKA by g1=g and g; =7, Lgii1; for all i e {2,...,d} (we have indeed
Y Lgi_17i € 'k since ' is normal in Gk /R because K/F, is Galois). By
construction, we have g - Yo=Y and the component of index Y I

Q((xl)l)

is precisely g(xlo) for all (z)y € [ L. As & is stable under I'k a,

’YEGKoo /Fo
Y=o

this implies in particular that 57 is stable under I'c. By [22] Proposition 3],
this implies that there exists an mteger ny such that 8 C Ky,
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As Fi(_l C I'k,a acts transitively on the set of those elements v €
GK I mapping to o (by the action given by (g2,...,9s) - (72,---,75) =
(1292, 92 17393, - -+, 95 17595)), and as g~ ((2y)y) = (2g4), when g =
ldg_, the stability of & under I'x o implies that the projection pr, o
loog: K, ®KA La — L onto the factor of index v maps &, into K, for
all v € GK /Fy mapping to o.

The injectivity and equivariance of 7o, , imply that &, is fixed by ', A.
Now if we call n the maximum of those n, (there are finitely many of these
since GOL s finite), this shows that all the localizations K, ®k, £ are

K/F,
invariants under ', A: the same holds for £. O

Remark 3.23. The previous proposition shows that our geometric setting
is that of a finite discrete space, corresponding to a finite product of fields:
there are finitely many finite extensions E;/K such that Ka ~ [] E;. The

el
data of a Ka-module M is thus equivalent to that of the colleétion of its
localizations (E; X g, M);cr. In particular, the Ka-module M is free of rank
d if and only if dimpg, (F; X, M) =d for all i € I.

Definition. Let X be a La-representation of I'k A. An element x € X is
said to be Ka-finite if its orbit under I'x A generates a Ka-module of finite
type in X. We denote by Xf the subset of elements elements that Ka-finite
in X. In other words, Xs is the union of all sub-Ka-modules of X that are
of finite type and stable by I'x A. Note that X is a sub-Ka-module of X,
and that it is stable under I'g .

Corollary 3.24. If X € Repy, (') is free of rank d, then X; is a free
KA oo-module of rank d, and the natural map

LA ®KA,OO Xf - X
is a ' A-equivariant isomorphism.

Proof. By Corollary we can find a La-basis B = (eq,...,eq) of X such
that Y := @ K o€; is stable by 'k A in X. By construction, the natural

=1
map La ® Ka. Y — X isa 'k a-equivariant isomorphism. We have to show
that Y = X¢. The action of 'k A on Y is described in the basis B by a
continuous cocycle U: I'gk A — GL4(K A o0): there exists m € N such that U
d

has values in K, o. This implies that Y}, := @ K, ae; is stable under the
i=1
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action of ' A, so that Y}, C X¢. As X¢ is a Ko, aA-module, this implies that
d

Y C Xs. Conversely, let x € X5. As x € X, we can write uniquely z = > A\je;

where Ai,...,A\g € La. Let £ be the sub-K,, c-module of L generéfeld by
the coordinates in ‘B of all the elements g(z) with g € Txa. As x € Xy,
the K, A-module £ is of finite type, and stable under the action of I'x A
by definition (because the coordinates of g(x) in B are given by the matrix

g(A1)

product U, < : ) and Uy € GL4(Km,a)). By Proposition [3.22) we have
g(Aa)

E C Ko, hencé reyY. O

Proposition 3.25. Let/\K’ be a finite extension of K in K. Recall that
L =Ko and put L' = K!_. The extensions Ka oo — K’A’oo and La — L'\
are finite étale, and Galois with group Gal(K'_ /K)® if K. /Ku is Galois.
Moreover, we have K ®k, .. La Sy

Proof. ¢ If A" C A and o € A\ A, the finite separable extension K, — K],

tensored with K/®%" @p Kr‘?(A\(AIU{O‘})) over I provides a finite étale map

KAV g, gBAAU{a))

for all n € N. the latter is Galois with group Gal(K/ /K ) when n > 0 if
K! /K« is Galois. The composition of all these maps thus provides a finite
étale map

KS% — K94

which is Galois with group Gal(K’_/K.)® when n > 0if K /K. is Galois.
Put together, this shows that the map KA o — K/Apo is finite étale, and
Galois with group Gal(K’ /K. )? if K/ /K is Galois.

e There exists ng € N such that n > ng = [K], : K] = [K], : K], so that
K! ®, Ko — K. By [1, Corollary 3.10], making ng larger, we may assume
that the cokernel of the map Ox; ®o,, Ok, — Ok:_iskilled by p whenever
n > ng (we could replace p by any element on positive valuation in Ok __,
but we will not use this). This implies that for n > ng, there is an exact
sequence

0 — OF ®pea O~ = OF2 T =0
where T is a group killed by p. If » € N+, we deduce the exact sequence
Tor%(Z /p" Z, (’)}%’,A) — Tor%(Z /p" Z,T)
= O ®oga OF2/(07) = ORL/(07) = T/(") = 0.
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As O}‘%A has no p-torsion (resp. T is killed by p), we have
Torlz(Z/pTZ,(’)}@}i):{O} (resp. T/(p") =T and Tor’(Z /p" Z,T) ~T),

hence an exact sequence
A A fr A
0—=T — O ®pza O /(p") = O /(") = T — 0.
It splits into two exact sequences
A A
0= T = O ®pza ORZ/(0") = Im(fr) =0
RA T
0—Im(f,) = O~ /(®") =T —0.
Passing to inverse limits gives exact sequences

0—-T— I'&n(f)}‘%é Qs O}‘%ﬁ/(pr) — limIm(fy) — 0
r " r

O—>1'Lmlm(j'})—>(’)L/A —T

(the exactness on the right in the first sequence follows from the fact that
the constant inverse system (7°),>1 has the Mittag-Leffler property). As Ok

is free over Ok , so is O%A over (’)?}A: this implies that

lim OF @psa OF2/(0) = O ©pea Im OF2/(p7) = O ®pes O,
T r
The previous exact sequences thus provide an exact sequence
0—-T— O%? ®O;§j O, — OL’A —T.
Inverting p gives an isomorphism
K[®A @pen Lo Ly,

hence an isomorphism K /A,oo QKa. La 5 Ly, showing the last assertion.
The statements on the map Ly — L', follow. O

Proposition 3.26. The Ka -algebra La is faithfully flat.

Proof. e Assume that K/Fy is Galois: so is K,/ Fp for all n € N. Recall that
6—1

. . . . . G
the choice of an ordering on A provides an isomorphism K, A ~ K, “*/"



Multivariable de Rham representations 47

(where G, /p, = Gal(K,/Fp)): the localizations of K, A at maximal ide-
als are given by the projections ty: K, A — K, indexed by the elements
g e Gi(j,,l/Fo‘ The corresponding localization K, — Ky, ®k, , La is flat
(because K, is a field!): this proves that the map K, o — La is faithfully
flat.

Let I C KA o be anonzero ideal. For each n € N, put I, = I N K, o (where
K, A is seen as a subring of Ka o). By flatness, the natural map I, QK. A
LA — L is injective for all n € N. The commutative diagram

S
Z”l c—

Iny1 @K, 0 L

La

thus implies that the natural map i,: In ®k, , La — Iny1 QKk, ., A LA is
injective. Passing to the inductive limit, this implies that the following com-
posite of the natural maps

li&l([n K, A Lpa) — 1 QK. La — La
n

is injective. As the first map is surjective, it is an isomorphism, so that the
natural map I ®g,  La — La is injective. This proves the flatness in this
case.

As seen in the proof of Proposition [3.22] if o € Gig/}o, there is an injection
loow: Ki,®Kx, La —  [[ L. It inserts in the commutative diagram
leGi(;l;/Fo
=g

K, Ok, Knoo— [l K-
XEGi(_Oi/FO
i

o

KL1®KA La _teoe I1 L
ZGG'S_l

Koo /Fo
=g

As the top horizontal map is faithful (because its components are precisely
the localizations of K, ®k, KA~ at its maximal ideals), and as the right
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vertical map is faithful, so is the composite

K, @Ky Knco > K@k, La— [ L

5—1
€/

hence K,, @k, KA o — K, @K, La is faithful as well. As this holds for all
o € G/, this implies that Ka o = La is faithful.

e In general, let K’ C K be the Galois closure of K/Fy. By what precedes,
the map K  — L) is faithfully flat. Moreover, K\  is free as a KA oo
module, so that Ka o — L’A is flat as well. Let I C KA « be a nonzero ideal.
The natural map I ®k, L’y — L/ is thus injective. On the other hand,
L'\ is free over La since K’A7OO is over K o and K’A?OO OKa o LaS Ly
by Proposition This implies that I ®k, _ La — I @k, . Ly is injec-
tive, so that the composite map I ®p, . La — L/, is injective. As it factors
through La, this implies that [ ®x, _ La — La is injective, showing the
flatness of KA oo — La.

If M is a KA co-module such that M ®g, . La = 0, we have

(M @Ky . Kpoo) @Ky Ln = M @k, In =~ (M @, . La) ®p, Ly =0

so that the faithfulness of L)y over K ., implies that M ®k, ., Kx o, =0,
hence M = 0 since K\ ~ 18 free over KA o. O

Corollary 3.27. (¢f [3, Lemme 3.15]) Let Xi and Xa be free La-
representations of finite rank of I' i . The natural maps
HOme~A (XLf, XQ,f) — HOmLA (Xl, X2)f
HomRepK&A(rK,A)(Xl,f, Xaf) = HomRep, (1ya) (X1, X2)

Prea) (K16 X26) = Bxtiep, (1.0 (X1, X2)

1
EXtRepKocyA(

are bijective.

Proof. By Corollary we have LA @, . Xif— X1 and La Qg 4
Xog 5 Xs, so that the map

La ®KQCTA HomKoo’A (XLf,XZf) — HomLA (Xl,Xg)

is an isomorphism of La-representations of I'x A (since X;¢ and Xy¢ are
free of finite rank over K a). If we pick bases of X and Xg ¢ over K A,
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the same proof as in the previous corollary shows that there is a natural
isomorphism

HomKoo,A (Xl,fa X2,f) = HomLA (Xl, XQ)-F

of K a-representations of 'k a. Taking invariants under I'x A gives the
K a-linear isomorphism

HomRepKOC,A(FK_,A)(Xl,f, Xof) > Homgep, () (X1, X2).

As Extheme,A(FKyA)(XLf,X27f) = HY(Tk A, X¢) and
EXti{epLA(FK,A)(leXQ):HI(FK,AaX) where we have put X =

Homp, (X1, X2) € Repy, (I'k,a), the last statement reduces to show-
ing that the natural map

H Tk A, X5) = H' Tk A, X)

is bijective. Let c: 'y A — X be a cocycle whose image in HI(FKA,X) is
trivial: there exists € X such that (Vg € I'xa)c(g) = g(z) — 2. Fix B a
Ko, a-basis of X¢. The action of I'k A on X¢ and X is given, in the basis B,
by a continuous cocycle U: I'x A = GLg(Kso a) (where d is the rank of X
over La). Let u, € K& 4 (resp.v € L) the column vector whose coefficients
are the coordinnates ofic(g) (resp. x) in the basis B: we have uy = Uyg(v) — v
i.e. g(v) = Ug_l(ug +v) for all g € 'k A. Taking m € N large enough, we can
assume that U has values in GLy(K, a) and ug € K A forall g € T'g A Let
& be the sub-K,,, A-module of La generated by 1 and the entries of v: it is of
finite type and stable under the action of I'x A. By Proposition we have
€ C Ky A, so that x € Xf, which means that the class of Hl(FK’A,Xf) is
trivial. This shows the injectivity of the map. To prove the surjectivity, start
from a continuous cocycle c: I'y A — X. It defines an extension X of La par
X. As La-modules, we have X=Xo L, the action of g € ' A is given
by g(x,\) = (g(z) + ¢(g9)g(N), g(A)). By Corollary the Koo a-module
Xf is free of rank d + 1 and the map La ®f__ . )Zf — X is an isomorphism.
This shows that the sequence

0—>Xf—>)?f—>KA7OO—>O

is exact when tensored by La over Ka o as L is faithfully flat over Ka o
by Proposition this implies that it is exact, so that )?f defines an exten-
sion of K, A by Xf, that corresponds to a cohomology class in H! (Cr.A, XF)
mapping to the class of ¢ in H(I'g A, X). O
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Theorem 3.28. The functors

ReprA(GKvA) Y ReprA (Tr.A) Repj:A (Cra) < Repg(Am(I‘KA)
W — Whxa X — X¢
CAa®p, X X LA ®Kg, Y <Y

are equivalences of categories.

Corollary 3.29. If W € Repl., (Gka), we have H(Hyx A, W) =0 for all
1 € Nyg.

Proof. By what precedes, we have W ~CA®pg_,Y where Y =
(VVHKA)f € Rep'}(oc L(CkA). As Y is free of finite rank over Ko A, we have

H (Hy,a, W) =~ H (Hg,a,Cn) ®K. o Y =0
for all i € N by Theorem (3.3 ]
3.30. Generalized Sen operators

Let Y be a free KA o-representation of rank d of I'g A.

Definition. The Sen operators of Y are the maps (¢q)aca given by

oy YW -y
Paly) = ”%Eﬁf log(x(7))”

Note that ¢, € Endg, _(Y) for all @ € A. As ' A is commutative (since
I'k is), the operators ¢, commute in Endg, _(Y). Also, each ¢, commutes
with the action of ' A by construction.

These operators describe the infinitesimal action of I'x A on Y. More
precisely, we have

Proposition 3.31. (c¢f [22, Theorem 4]). For all y € Y, there is an open
subgroup 'k Ay <Ti A such that for all € A and v € T o NTg Ay, we
have

v(y) = exp (log(x(7))¢a)y-

Corollary 3.32. The set of elements in'Y on which the action of I'g A s

finite (i.e. factors through a finite quotient) is (| Ker(pq).
acA
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Proof. Let y € (] Ker(p,). By Proposition [3.31] there exists an open sub-
acA
group I'g Ay <T'g A such that for all a € Amand v € 'x o NT'r,Ay, We

have v(y) = exp (log(x(’y))goa)y =y, so that the action of I'x A on y factors
through the finite quotient I'x A /T'k A . Conversely, if the action of I'g A
on y € Y is finite, there exists a open normal subgroup I'y << I'k A such that
v(y) =y for all v € T'y. This implies in particular that ¢.(y) =0 for all
a € A. d

Proposition 3.33. If n € Z2, the Ka-module Y (n)'<2 is of finite type,
and vanishes for all but finitely many values of n. Moreover, the map
KA 0o @Ka YTxa Y is injective, and its image is precisely the set of ele-
ments in Y on which the action of I'k A is finite.

Proof. There exists mg € N and a basis B = (e1,...,eq) of Y over Ka o

such that the cocycle describing the action of I'x A on Y in ‘B has values in
d

GLi(Kmp.a)- Ifm € Nspy,, put Vs, = @ Kppae. A’ C Aand o€ A\ A,
i=1

we have a semi-linear action of I'x A on (Km,A\{a} ®F, Koo,{a}) ®Koma Ym:

restricting the action to to(I'x) C T'k,a provides a Ko-representation of

I'k. By [22] Theorem 6] (¢f also [16 Proposition 2.6]), the K-vector space

ta(Tk)
((Km,A\{a} XF, Koo,{a}) K a Ym(ﬂ))

is finite dimensional, and vanishes for all but finitely many values of n, (the
other components of n being fixed). Making m larger if necessary, we thus
may assume that it lies in Y;,,(n). Then

ta(Tx)
((Km,A’ QF, KoqA\A’) ®KnL,A Ym(ﬂ)>

is equal to

(Karu{a) ®F, Koo a\(aUfa}))

X ((Km,A\{a} D5, Koo {a}) @K, s Yim(n)

Karu1ay®ry K, a\arufay

)LQ(FK)

inside

(Km,A'u{a} QR Koo,A\(A’U{a})) @K, » Ym(1).
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A finite induction thus proves that Y (n)'*2 lies in Y,(n) if m >0 (in
particular it is of finite rank over Ka), and vanishes for all but finitely
many values of n.

Put Y, = ﬂ Ker(¢q)y,,) C Ym. This is a Ky, a-module of finite type

endowed with a dzscrete semi-linear action of 'k A. By flatness of K, A
over Kpm, A, we have Y, ~ Ky A ®k,, . Yy, . Take a K-basis of Y, : for
m >0, it is fixed by 'k, A, so that the action of I'x A on Y,, fac-
tors through I' A /T'k,, A >~ Gal( K,,/K)?. By Galois descent, the natural
map K, A @k, Y,% % Y is an isomorphism. Tensoring with K o thus

shows that
Ko @y Yo €2 =Y = ﬂ Ker(¢q)
aEA

/FKA

is an isomorphism when m >> 0, implying that Yy, = Y'T'xa when m > 0.
As YT'xa c Y C Y, we have YFK a = Y"I'xa hence an isomorphism

Kpoo @k, Y52 5Y Y.

O

The previous proposition can be further refined in order to include all
Hodge-Tate weights:

Proposition 3.34. The natural map

D Kaco(—n) @x, (Y(0) ™ =Y

nezs
18 tnjective.

Proof. Keep notations of the previous proof. Let N € N and Ey =
{=N,...,N} C Z. Take N large enough so that (Y(@))FK’A vanishes when
n ¢ E5 (cf Proposition [3.33). If A’ C A and n = (na)acar € Z2, we de-
note (n,0a\a) € Z2 the element whose component of index « is ng, if o« € A’
and 0 otherwise. Assume o € A\ A’. We can see (Y, (1, QA\A,))FK’A/ (where
we identify FK,A’ with FK,A’ X {Id}A\A’ C FK,A) as a Ka ®F, Km,A\A"
module endowed with a semi-linear action of I'g a\ar. We can view it
as a Kp,-vector space (via the map iy: K, = Ka ®F, K, a\ar given by
= 1® - ®1r®1®- - ®1, where z is the factor of index «) endowed
with a semi-linear action of I'x (via to: I'x = I'g a\a/). By [1I, Lemma
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2.3.1], the map
o 1NN ta(l'x) NN
@ Km(—q) ®k,, (Ym(n,0a\4)) “*'(9)) = (Ym(n,0a\a0))
q=—N

is injective. For all ¢ € Z, let (n,q,0a\(a'u{a})) € Z* be the element whose
components are all equal to those of (n,0 A\ A), except that of index o which
is equal to q. As

'Uf{a K,A! ta(l'x)
(Yon(n, (LQA\(A/u{a})))FK’A o} = ((Ym(@7QA\A’))F ' (Q)) :

if we tensor with K, ar(n) ®F, Ka\ar over Ka and sum over all the n € EJ% ,
we deduce that the map

FK AlU{a
B Kmauvy (=0 Okuni Yml0aaugay)) 2

ﬁEEﬁlu{a}
— @ TL OA\A/))FK’A/

neEy

is injective. The composition of these maps for growing A’ gives the natural
map

D Enal-n) @x, (Ym(n) ™ = Yo,

neEQ

which is thus injective. The inductive limit (as m — oo) of these is the
natural map

@ KA oo(—n) @K, ( n FKA = @ KA oo(—n) @K, (Y(Q))FK’A —Y

nezZ? neE%{

which is injective as well. O

Corollary 3.35. If W e Repc (Gk.a), there are finitely many n € 7z~
such that (W(i))GK ® £ {0}, and the natural map

aHTO @ CA ®KA (W(@))GK"A — W

nezZ4

18 injective.
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Notation. If V € RepQP(GK,A), we put Dsen(V) = ((Ca ®q, ‘/')HKA)f €
Rep'}Q)x(F K.A). By what precedes, the infinitesimal action of I'x A on

Dsen(V') endows it with K o-linear operators ¢, for o € A. Similarly, we
put Dc, (V) = (Ca ®q, V)Gx.a: this is a Ka-module.

Corollary 3.36. If V € Repq (Gk,a) and n€Z®, the Ka-module
Dc(V(n)) is of finite type and wvanishes for all but finitely many n.
The natural map KA oo @y Doy (V) — Dsen(V) s injective, with image

) Ker(pq). Moreover, the natural map
acA

OzHT70(V)I @ CA(_@) OKa DCA(V(E)) — Ca ®Qp 4

nezZs
1S 1njective.

4. Multivariable period rings, de Rham and Hodge-Tate
representations

4.1. Construction and first properties of Bgr, A

Let C” = @ C be the tilt of C: this is an algebraically closed complete

=P
valued field of characteristic p, endowed with a continuous action of Gg.
Denote by O its ring of integers. Recall there is a surjective map

0: W (ch) — O¢

whose kernel is principal, generated by & = p — [p] where p = (p,p*/P,...) €
Oc»v. It extends into a surjective ring homomorphism 6: W (ch) [p~1] — C.
We denote by Bl the completion of W (O¢»)[p~!] with respect to the
Ker(#) = (£)-adic topology. The map 6 extends into a surjective ring ho-
momorphism 6: B;{R — C. The ring B;{R is a DVR with uniformizer & and
residue field C. Another unifomizer is given by

= togl =S 07"

n=1

where € = (1,(p, (p2,...) € O¢» is a compatible sequence of primitive p"-th

roots of unity. The natural map k — O¢» gives rise to a ring homomorphisms

W(k)[p~!] = W (O ) [p~'] = Big. It extends into a field extension K —
+

By
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Notation. e We have O¢, /(p) ~ (Oc/(p))®? (the tensor product is taken
over k). As the Frobenius map on O¢/(p) is surjective, the same holds on
Oc.,/(p). We can thus define the tilt of O¢, as

O, = lm Oc, = { (@™ )nen € O, ; (¥n € N) (207 = o™ |,

TP

This is a perfect k-algebra (the map k—>(’)bCA being given by z +—
([], [#/7], [#/7°],...)), endowed with an action of G A, induced by its
action on O¢,. Moreover, the map

On: W(OL,) — Oc,

(an)neN — ana%n)

n=0

is a G g a-equivariant surjective morphism of W(k)-algebras (¢f [10) §5.1]).
By localization, it induces a Gk a-equivariant surjective morphisms of Fp-
algebras

Oa: W(Og,)[3] = Ca.
e Put (OC>)®A = Oc» -+ Qk Oc» (where the copies of O¢» are indexed
by A). If a € A, put
Pa=1®--212pR1® - ®1
(where p is the factor of index «).

Denote by I C (OC>)®A the ideal generated by {Da }aca-

Lemma 4.2. The ring (OCI;)®A is I5-adically separated.

Proof. Let {ex}rean C Ocv be a subset whose image modulo p is a k-basis of
Oc»/(P). Then the familly {p'ey }ien is linearly independent over k, and gen-

AEA
erates a dense subspace of Ocv. In particular, there is an injective k-linear
map f: Oc» — kN XA such that f(ﬁnOCb) C kN=r>A_ The tensor prod-

uct of these provides an injective k-linear map fa: (OCb)®A — kN° xAS,

and fA(Ig) C kE"XAA, where E,, = {(z’a)aeA e N2 ; Y g > n} In partic-
acA

o0 o0 o0
ular, we have fA( N Ig) c () kB2 = {0} (since () E, = @), so that
n=0 n=0 n=0

N 1 = {o}. O
n=0
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Propos1t10n 4.3. There is a natural injective morphism of k-algebras
(ch) — OCA, that induces an isomorphism

~ QA 1~
Tia: (Oc) ™" /15 = Ocy /(D)
Moreover, ObCA is isomorphic to the Iz-adic completion of (OCb)®A.

Proof. Recall that for each m € N, we have a surjective morphism of k-
algebras

Tm: O — Oc/(p)

(@")pen = 0™

(where the k-algebra structure on O¢/(p) is given by z — z'/P™), and
Ker(my) = pP" Ocs, hence an isomorphism 7, : Ocs /(PP") = Oc/(p). Tak-
ing the tensor product of these, We get an isomorphism of k-algebras
Fma: (O /(™))% 3 (00 (p )) ~ O¢, /(p). This means that there is

a natural surjective morphism of k-algebras m, a: (OCI:)®A — Oc./(p),
whose kernel is the ideal Igm) generated by {ﬁﬁm }a cA- The diagrams

0 ™ (0c) 2 22 0c, /() ——= 0

| v

0 Iém—i—l) (ch)@)A Tm41,A OCA/( ) 0

(where F'is the Frobenius map) commutative. Passing to inverse limits pro-
vides the exact sequence

. m RA
0— yLnIIg ) (0c:)77 = O,

As Izgm) Clgm, we have @I ﬂ I ) ¢ ﬂ Ip = {0} (¢f Lemma

, i.e. (ch)@) is Separated for the I~ adic topology This provides the
QA

injective morphism (ch) — (’)bcA and the isomorphism 7 A.
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As seen above, the isomorphisms 7, o insert in the commutative dia-
grams

(0c)*2 /18 2 O, /()

T r

(001 =2 0cs

Passing to inverse limits gives an isomorphism @ (ch)@)A /1 ng) = ObCA, SO
m

that C’)k’cA is the completion of O¢, with respect to the topology associated
to the family of ideals (Ié}m))mer. As I§m6 - Ié)m) C Igm for all m € N+,
this topology coincides with the Iz-adic topology, proving the last part of
the proposition. O

Notation. For a€ A, put & =p—[pa) € W(ObCA). We have &, €
Ker(fa).

Corollary 4.4. The ideal Ker(0a) is generated by {&a}taen.

Proof. We have 0a(&,) =0 for all a € A, so that the ideal generated by
{€a}aen lies in Ker(6a). To prove that this inclusion is an equality, it is
enough to check it modulo p (because the source and the target of O are
p-adically separated and complete), i.e. that the kernel of the map

Ot = Oc./(p)

(given by z +— z(0) is the ideal generated by I5. This kernel contains I5:
passing to the quotient, we get a morphism O¢, /I; = Oc, , which is nothing
but 71 A. We conclude using Proposition O

Definition. e Let Aj;s o be the completion of W(ObCA) with respect to
the 0" (pOc, )-adic topology (cf [8, Définition 2.2]), where 05" (pOc,) =
(p,Ker(6a)). This is a W(k)-algebra endowed with an action of Gg a
(because 0a is equivariant). The map fa extends to a surjective G a-
equivariant morphism of W(k)-algebras

Oa: Ainra — Oc,

(because O¢, is p-adically complete).
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o Let B:{RA the completion of Ainf A [%] with respect to the Ker(6a)-adic
topology. This is a Fp-algebra endowed with an action of Gk A, and the map
Oa extends to a surjective Oa-equivariant morphism of Fy-algebras

QA: B;R,A — C'A.

By definition, we have BXRA = @Ainf’A [%}/Ker(ﬂA)m. The p-adic
m>1
topology on A, A induces a Banach space topolgy on each quotient

Aint,A [%] / Ker(Oa)™ and we endow BQ'R A With the inverse limit (i.e. prod-
uct) topology, which we call the canonical topology. Otherwise mentioned,
BIR A is considered as a topological ring with this topology.

Remark 4.5. In contrast with B:va the ring BIR A depends of £ when
o>1.

Proposition 4.6. If F is a finite subestension of K /Fy, the Fy-algebra
structure of B(J{RA extends uniquely to a Fa-algebra structure.

Proof. This follows from the fact that Fa is a finite étale Fp-algebra. O

Notation. Ifa € A, the Ogs-algebra structure of O%A (induced by the map
r—= 1R ®1rx®1®---® 1, where z is the factor of index «) induces a
B:{R—algebra structure on BZ{R, A+ All together, this provides a BIP?A—algebra
structure on BIR’ A- In particular, any element b € BIR provides an element
by € BXRA (which is nothing but the imageof 1 ® - - ®1 b 1®---®1).
For instance, we have the elements ¢, and (p — [p])a = &a-

Proposition 4.7. The ideal Ker(6a) C BKRA is generated by {ta}aeA.

Proof. This follows from Corollary [£.4] and the fact that ¢ and £ both gen-
erate Ker(f) in BJy, so that they differ by a unit in Bj. O

We endow B&LR A With the filtration defined by
Fil' Bl o = Ker(6a)'

for all ¢ € N. This filtration is decreasing and exhaustive. Let gr B(J{R A=

oo .
P gr' B:{R A be the associated graded ring.
i=0 ’
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Proposition 4.8. Let R be a ring, x1,...,%n a regular sequence in R and
= @R/Im the I-adic completion of R, where I C R the ideal generated
m

by {x1,...,xn}. Then the sequence x1,...,x, is reqular in R.
Proof. This follows from [I7, Theorem 39 (2)]. O

Lemma 4.9. The sequence (ﬁa)a s regular in O%A

€A

Proof. By Proposition H OC is isomorphic to the Iz-adic completion of
(ch) : Lemma shows that it is enough to check that the sequence
(poé)aGA is regular in (ch)®A, i.e. that foreach A’ C Aand a € A\ A/, the
element p,, is regular in the quotient (OC»)®A/(@;>66A/ ~ (Oc»/(@)@ﬂl Rk
(OCb)®<A\A/). This follows from the regularity of p in the domain Ogs, by
taking the tensor product with (OCb/<@)®AI Ok (ch)@)(A\(A/U{a}) above
the field k. 0

Proposition 4.10. The sequence (fa)aeA s regular in BIRA. Similarly,
the sequence (to)aca is regular in B(—;RA'

Proof. By Lemma the sequence (ﬁa) is regular in O%A. As p is
regular in W(Ob ) thls implies that (p,fa) is regular in W((’)C ). By
Proposition H the same holds in Ajpr A. As Amf A is separated with respect
to the (p,&n)aca-adic topology (the same holds for Aint A /(p,&a)acar for
any subset A’ C A), [7, Théoreme 1] implies that any permutation of the
sequence (p,&y)aca is regular in Ajpr A as well. This shows in particular
that (fa)a A is regular in Ajyr A. As localization is an exact functor, this
implies that (fa)a cA is also regular in Ayt A [ ] Lemma then implies

that it is also a regular sequence in B dr.A- The second part of the proposition
follows. O

Note that gr’ B(J{RA = dRA / Ker(GA) Ca. By an abuse of notation,
we still denote by ¢, its image in gr' BT, dR.A-

Corollary 4.11. The morphism of Ca-algebras Ca[Xalaca — grBig A
mapping Xq to to for all o € A is an isomorphism.

Proof. This follows from Proposition and [7, Théoréme 1]. O

Corollary 4.12. We have H*(Gg a, BgR,A) ~ KA.
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Proof. Let x € HO(GKA,BdRA)' we have y :=0a(z) € C’gK'A KA since
O is equivariant. This implies that z :=x —y € HO(GK A, Filt Bar.a). As-
sume z # 0: as the filtration is separated, there exists ¢ € N+ such that
z € Fil' B:{RA\FHH'1 B(J{RA, so that the image Z of z in gr B(TRA is not
zero. This 7implies in pairticular that H°(Gg A, gr’ BIR, A) # 0. ]éy Corol-
lary |4.11, we have gr' BdRA ~ @ Ca(n): by Theorem this implies

neN4

. |n|=i
that HO(Gg a,gr'Biz o) = 0: contradiction. This shows that z =0 i.e.
x =y € Ka. The reverse inclusion is obvious. O

Corollary 4.13. For all re€N, we have H'(Hgna,gr" BXRA) =
H! (Hra,Fil"B dRA) = {0}.

Proof. The equalities H'(Hg a,gr" BdRA) = {0} follow from the Gg a-
modules isomorphisms gr” BT, drR.A = Syme, ( D CAta) obtained by Corol-
' a€A

lary and Theorem

If s > r, we prove by induction on s —r that HY(Hg a, By s) = {0}, where
B, s is the quotient Fil" B R.A /Fil°B dR A~ This is obvious if s — r = 1 since
By ,y1 =gr" BdR’A. Assumlng that H! (Hr A, Brs) = {0}, we have the exact
sequence of G’ A-modules

0— gr® BIRA — Brst1 — Brs — 0

so that Hl(HKA,gr BdRA) — Hl(HK,A,BnS_H) — HI(HKA,B“S) is exact,
hence the vanishing of H! (Hg A, Brs+1). To conclude we use the exact se-
quence

0 = lim WH(Hg A, Brs) = H' (Ha, Fil' By o) = lmH (i A, Bys) = 0

S

and the fact that the sequence (HO(H KA, BT»S))s>r has the Mittag-Leffler
property (the transition maps are surjective, which follows from the vanish-
ing of the cohomology of gr® BdRA for all s > r). O

Definition. Put tp = [] ta € BdRA, and Bgra = BdRA[ } As Gg
aEA
acts on t by multiplication by the cyclotomic character, the group Gg a

acts on ta by multiplication by XLA, where 1 it the element in Z® whose
components are all equal to 1. In particular, the action of Gg A on BérR A

. . 1 —1 + .
extends into an action on Bgr, a. Also, we endow Bgr A = hglt AZ B dR.A with
i
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the inductive limit topology. Finally, we endow Bgr A with a filtration in-
dexed by Z by putting

Fi|i5+7’ B+

Fil" Bar,a = lim £’ dR,A

P>

for all » € Z. This defines a decreasing separated and exhaustive filtration
on Bgr,a. Note that Fil" Bgr a is stable under the action of Gx a for all
r e Z.

Proposition 4.14. We have gr" Bgr A ~ &b Catx, where tx =
ﬂ:(nu)aeAeZA
>0 Ma=T
[ tZ if n = (na)aea. In particular, we have
aEA

Ka ifr=0

HY(Gx A, g™ B = .
(Gr,a,8r" Bar,a) {0 ifr 40

Proof. By definition we have

grr BdR,A — hgtgl gri§+r B:;R A
i>r '
~lm P = P Oati
i2r m:(ma)aeaéNA ﬂ:(na)aeAEZA
> Ma=10+T > Na=T
The second part follows from Theorems and O

Definition. Put Byt a = grBgr,a. By what precedes, this is a graded Ca-
algebra endowed with an action of Gk a, and Byra ~ CAlta,tg aen =~
@D Ca(n) (as Gk ,a-modules).

nezZ®

Corollary 4.15. We have HO(GKA, Bir.a) = HO(GKA, Bur,a) = Ka.

4.16. De Rham and Hodge-Tate representations

Put G, = Gal(K /Fp). Similarly as we have seen in the proof of Proposi-
tion the choice of an ordering o1 < - -+ < ag of A provides an injective
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and Gx a-equivariant ring homomorphism

(induced by the map sending z; ® --- ® x5 to the element whose com-
ponent of index v = (72, ...,7s) € G‘SFgl is x1y2(xoys(xzs -+ vs(xs)-++))),
where the action of g = (g1,...,9s) € Gka on the LHS is induced by
the action given by g- (z1 ® - 2s) = g1(21) ® - - @ gs(2s) on K®2, and
that on the RHS is given by g-(azl)le@;l = (glxg.l)v, where g-7 =

(91 "7292, 95 "¥3935 - - -, 9517896) i ¥ = (72,....7). The tilt of this map
gives an injective Gk a-equivariant ring homomorphism 7’ : CbA — II c’.

1€GE"
The diagram

W(@)
WO )~ I W(Oe)— [I Bl
yEG! EG?
N ll’[ﬁ
Oc, L II Oc
yeG‘}gl

is commutative. This induces an injective and Gk a-equivariant ring homo-
morphism

wr: Blpa— ][] Bix:
ZEG‘SFgl
The component of index 7 of the image of ¢,, by the previous map

is X(y2---v)t: this shows that it extends into an injective and G a-
equivariant map

tar: Bara = ] Bar
EG!

(which shows in particular that Bggr, a is reduced).

Notation. If V € Repr(GK,A), we put Dgr(V) = (Bar,a ®QPV)GK,A.
This is a Ka-module which is endowed with the filtration given
by Fil" Dgr (V') = (Fil" Bar,a ®QPV)GK’A. By Bgr,a-linearity, the inclusion
Dar (V) C Bar,a ®q,V extends into a Bar a-linear and Gk a-equivariant
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map
adr(V): Bar,a ®k, Dar(V) — Bar,a ®q, V-

We define Dyt (V) and agr (V) similarly.

Proposition 4.17. The Ka-modules Dgr(V) and Dur (V) are of finite
type, and the maps aqr (V') and anr (V) are injective.

.Ijroof. e Assume that K/Fp is Galois with group Gg/p,, and put

Bir,a = [I Bar: as recalled above, there is an injective Gg a-
1€G!

equivariant ring homomorphism tqr : Bgr,a — fédR?A (that depends on the

choice of an ordering a; <---<as on A). Put [N)dR(V) = (ng’A ?q,

V) Gra - II Bar ®q, V' the map tgr induces a Ka-linear injective map
ZGG‘}:
vi Dar(V) = Dar(V). If (z4)y € JI Bar®q,V and g=(g1,...,95) €

1€y

Gk,a, we have g-(z,)y = (91(2g))y, thus (z,), € Dar(V) if and only
if g1(zg~) =2z for all g€ Grga and vy € G%;l. If g€ Gg and Yo =
(v2,---,7s) € G‘SFZI, define the element g = (g1,...,95) € GkA by g1 =g
and ¢g; = 'y;lgi,lfyi for all i € {2,...,d} (we have indeed 7;191;1%- € Gk
since Gk is normal in G'r, because K/Fy is Galois). Then we have g - Yo =
7, and the component of index 7, ofg(azl)7 is g(xlo): this shows that 2, €
Bar ®q,V is fixed under G, i.e. that x{o € Ddr,a, (V) = (Bar ®q, V)"
(where the action of Gk on V is via the map to,: Gx = Gi,a). This
implies that (x,), is fixed by Gk a if and only if its components all be-
long to DyRr,a, (V') and 4., = x, for all y € G‘El and g = (g, g2,...,95) €
{ldz} x Gi(_l. As Gi(_l acts transitively on those 7 that map to a fixed
g e Gig/%o, this shows that

Dar(V) = ]| Dare(V)C ][] Dare: (V)

§— S—
QGGK/lFO 1€GE, '

(where we embed the factor Dgr, (V) of index ¢ diagonally in

I[I Dar,a,(V)). As Dgr.q, (V) is a finite dimensional K-vector space, this
yeGL!
,1’_)20

shows in particular that BdR(V) is a Ka-module of finite type.
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The natural map Bqr ®x Dgr,a, (V) = Bar ®q, V is injective: so are the
maps

< H BdR> @K Dar,a, (V) = ( H BdR) ®q, V

€6y, V€G!
r-e y-e
for all o € Gig/}o, so that the map

aar(V): Bar.a @, Dar(V) — Bara ®q, V

is injective (since its localizations via the projection maps t,: Ko — K are
precisely the maps above). The diagram

Oth(V)

Bar,A @k, Dar(V) Bar,a ®q,V
Lar®1
Bar.A @k, Dar(V) Lar®1
1®e
&dR(V)

Bar,a ®x, Dar(V) > Bar,a ®q, V

is commutative: this implies that agr (V) is injective.

o If K/F, is not assumed to be Galois, let K’ C K the Galois closure of
K over Fy: what precedes shows that Dggr i/ (V) := (Bar,A <§§>QPV)GK’>A is a
K'\-module of finite type (hence projective of finite rank) endowed with a
semi-linear action of Gal(K'/K)?, and that the natural map

adr, ik (V)1 Bar,a ®ky Dar, ik (V) = Bar,a ®q,V

is injective. By Galois descent, we have Dggr x/(V) ~ K\ ®k, Dar(V) as
Gal(K'/K)®-modules, and Dqg (V) is of finite type over Ka. The commu-
tative diagram

Bar,A ® x5 Dar(V)

aqr (V)
\

Bir,a ®q,V

QaR, K/ (V)
Bar,a @k, Dar,x (V)

this implies that agr(V) is injective.
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e Consider now the Hodge-Tate side. By Corollary the Ka-module

Dir(V) = (@D Calw)2q, V)™ = @) (Caln) 2q, V)

nez” neZs

is of finite type (the sum is finite and all but finitely many factors are zero).
Moreover, the natural map

aHT,O(V>5 @ CA(—Q) ®KA (CA(Q) ®Qp V)GK’A — CA ®Qp V

nezZ®

is injective and G'i a-equivariant. If we tensor with Ca(m) over Ca and
sum over all m € Z2, this shows that the maps in the diagram

@ Calm—n) @k, (Caln)®q, V)¥<* —= @ Ca(m)®q, V

n,mezZ meZ4

2 er

@ Ca(¥) @k, Dur(V) Bur ®q,V
LeZ”

are injective. O

Definition. A p-adic representation V' of G a is said de Rham (resp.
Hodge-Tate) when the map agr (V) (resp. anr(V)) is bijective. We denote by
Repyr(Gk,a) (resp. Repyr(Gk,a)) the full subcategory of Repr(GK,A)
whose objects are de Rham (resp. Hodge-Tate) representations.

Recall that Dgg (V) is equipped with a decreasing filtration Fil®* Dgr(V'):
denote by gr Dgr(V') the corresponding graded module. Note that the map
aqr (V) is compatible with filtrations, where Fil"(Bqr,a ®x, Dar(V)) =

> Fil' Bar,a ® ¢, Fil" ™ Dgr (V) for all i € Z.
i€Z

Proposition 4.18. The filtration Fil* Dar(V') is separated and exhaustive.
There is a canonical injective map gr Dar(V) — Dur(V), and aqr(V) is
strictly compatible with filtrations. Moreover, if V is de Rham, then it is
Hodge-Tate and the map gr Dgr(V') — Dur(V) is an isomorphism.
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Proof. The first assertion follows from the corresponding fact on Bqgr A and
the finiteness of Dgr(V') as a Ka-module. If r € Z, the exact sequence

0— F”M_1 BdR,A — Fil” BdR,A — grr BdR,A —0
tensored with V' induces the exact sequence
0 — Fil"™ Dgr (V) — Fil" Dgr(V) — (gr" Bar,a ®q, V)<=

i.e. an injective map gr" Dgr(V) — b (Ca(n) ®q, V)Cra (cf
ﬁ:(na)rxeAEZA
D> Na=T
Proposition 4.14)). Summing over r € Z provides an injective Ka-linear map

iv: gr DdR<V) — DHT(V)
As agr (V) is compatible with filtrations, it induces a Ka-linear map

gragr(V): gr(Bar,a ®x. Dar(V')) — grBar,a @k, V.

We have gr(Bar.a @k, Dar(V)) ~ grBar,a @, grDar (V) ~
Bur ®K, 8rDar(V) and grBgra =Bura (as Ka is a product of
fields, the proof of this isomorphism reduces to the case of tensor products
of filtered vector spaces). Via these isomorphisms, we have the commutative
diagram

gr OldR(V)

BuTt ®K, grDar (V) Bur,a ®q,V

@iy
OHT (V)
Bur,a ®x, Dut(V)

which implies that gr agr (V) is injective, so that agr (V') is strictly compat-
ible with filtrations.

Assume V is de Rham, so that agr(V) is an isomorphism. Then
gragr(V) is an isomorphism: the preceding diagram shows that apr(V)
is surjective: it is an isomorphism by Proposition and V is Hodge-
Tate. This implies that 1 ® 7y is an isomorphism. As By a is faithfully flat
over Ka (because Chp is), this shows that iy is an isomorphism. O

Proposition 4.19. IfV € RepQP(GKﬁA) is de Rham (resp. Hodge-Tate),
then Dar(V') (resp. Dur(V)) is free of rank dimq (V') over Ka.

Proof. Assume V is de Rham: the map agr(V): Bara ®k, Dar(V) —
Bar,a ®q, V' is an isomorphism. Use Remark and its notations: for



Multivariable de Rham representations 67

each i € I, its localization

E; @ aqr(V): (E; @K, Bar,a) ®F, (£ @k, Dar(V))
— (EZ QK BdR,A) ®Qp Vv

is a B; ®k, Bqr,a-linear isomorphism. This implies that
lelEl(EZ QK DdR(V)) = dlme(V)

As it holds for all ¢ € I, this shows that Dgr(V) is free as a Ka-module.
The proof of the Hodge-Tate case is the same. O

Question : Is the converse true, i.e. is it true that if Dar (V) is free of rank
dimq (V) over K, then V' is de Rham?

5. Sen theory for BjR’ A-representations
5.1. Almost étale descent

Put LijA = H(Hg A, BZ{R,A)' We have

|§R’A = KA oofta]aea C Lgm.

These subrings of BIR A are endowed with the filtration induced by the
latter. In the sequel, we follow rather closely [3].

Lemma 5.2. For all r € N, we have natural isomorphisms

symi, _ ( & Kasota) — =8 Uy o
(0%

Sym, (@) Lata) — & Lins
[elS

[

Symg, ( Q}AC’AtQ) = gr” B(J{R’A.
aE

Moreover, the map IijA/ Fil” IIR,A — L(TR’A/ Fil” L;{RA 1s faithfully flat.
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Proof. The bottom map is an isomorphism by Corollary This implies
that the filtration on IIR’ A is given by the powers of the ideal generated by
(ta)acna, showing that the top map is an isomorphism as well. To check that
the middle map is also an isomorphism, we start from the exact sequence

. 1 .
0 — Fil"™ B(J{RA — Fil"” B(J{RA — gr BIRA — 0.
Taking invariants under Hx A gives the exact sequence
a1+ ar
0 — Fil" Lira — Fil” Lir.A
— HY(Hg 81" Big o) = H' (Hra, Fil' U BYG A).

By Corollary we have HY (H a, Fil" ! Bl o) = {0}, so that the natural
map
gr’ LKR,A — HY(Hga, g BKR,A) ~ Sym7 ( @ LAta>
aEA
is an isomorphism. The last statement follows from Proposition [3.26 U

Corollary 5.3. Under the assumptions of Proposition|5.25, put
Lgﬁ,A = HO(HK’,Aa BIR,A) and IZH%,A = K/A,oolItOé]]aEA‘

The natural maps LZIFR,A — LQE,A and IIRA — KE{,A are finite étale, and
Galois with group Gal(K'_ /K. )™ when K' /Ky is Galois.

Proof. By Lemma and Proposition the natural maps K2 ® K8
L(J{R7 A L:;R A and K22 @ ea I(J{R7 A dJ}g{’ A induce isomorphisms on
graded rings: these are isomorphisms. The statements thus follow from
Proposition |3.25 O

Proposition 5.4. (cf [3, Proposition 3.4]) The maps

hﬂ HI(HK,A/H,GLd(le_PI{{A)) - Hl(HK,A’GLd(BchFR,A))
H<Hg A
H open

H'(Cx.a, GLa(Ljz o)) = H'(Gra, GLa(BlR A))
induced by inflation maps are bijective.

Proof. Being inductive limits of inflation maps, they are injective. Let
U: Hga — GLd(BjR A) be a continuous cocycle. The composite 6O o
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U: Hga — GLy(Ca) is a continuous cocycle (by definition of the canonical
topology on le_R, A): by Corollary E‘SEI there exists a normal open subgroup
H of Hg A (which we may and will assume of the form Hg A for some finite
Galois extension K’ of K in K) such that the restriction of fa o U to H has
a trivial cohomology class. This implies that there exists By € GLd(Bj{R A)
such that the cocycle Up: g — Bo_lUgg(Bo) is such that 0 (U 4) = 14 for all
ge H.

Let M € N and assume sequences (B, )o<m<nm and (Up,)o<m<nr have been
constructed such that:

(i) B € Ig+Mg(Fil™ BJz o) and Up,: Hig,a — GLa(Bgz A) is a continu-
ous cocycle;

(ii) Up,g = By'Um—1,49(Bm) for all g € Hg a and 1 < m < M;
(iil) Um,g € Ida+Mg(Fil™ ' Bl \) forall g € H and 0 <m < M.

Denote by Vi 4 the image of Upr_1 4 in
Ma(Fil" BJg o)/ Ma(FiIl* 1 B, 1) =~ Ma(gr™ B A)-
If g,h € H, we have
Unm—1,gn — 1o = Unr—1,99(Uni—1,0) — La
= (Unm-1,g —10)g(Un—1,0) + 9(Upr—1,n — 1a)
so that

UM—I,gh — Id = UM—l,g — Id —i—g(UM_Lh — Id) mod Md(F”MJrl BIR,A)

since
g(Unr—1p) =15 mod My(FilM B;RA).

|M+1 B-‘r

Reducing modulo M(Fi dR.A) gives

Viigh = Varg + 9(Varn),

so that g +— Virg is a continuous cocycle H = Hg' A — Mg(grM B:{R’A).
In particular, the entries of Vi are cocycles H — gr'¥ BIR’ A+ By Corol-
lary these are trivial: there exists Bjs € Id—i—Md(FiIM BIR,A) such
that if we put Uy g = B]T;UM_ng(BM) for all g € Hix A, then Upy €
Idg + Mg (Fil 1 BY, ) for all g € H.
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By induction, we thus construct an infinite sequence (B, )meN. Property (i)
ensures that the infinite product B = ByB1Bs - -- converges in GLg(B, dR, A)s
and condition (ii) and (iii) imply that B_lUgg(B) =1, for all g € H. This
shows that the image of U in H!(H, GLd<BdRA)) is trivial. By the inflation-
restriction exact sequence

{1} = H'(Hg a/H, GLa(BYFA))
— H'(Hg A, GLa(Biz ) = H'(H,GLa(BJ A))

the class of U in HY(Hga, GLd(BjR A)) lies in the image of
HY(Hga/H, GLd(B(Jﬁ{IA)), showing the surjectivity of the first map.

The proof of the b13ect1v1ty of the second map is identical, replacing Hx A by
Gk,a- Note that in that case, we can take H = Hx A by Corollary [3.21]

Corollary 5.5. If W is a free BIRA—representation of rank d of Hg A,
then WHxa 4s a projective L;RA—module of rank d, and the natural map

+ Hgoa
BdR,A ®LcJ1rR,AW — W
is an isomorphism of BIRA—representations of Hg A.

Proof. By Proposition [5.4] there exists a finite Galois extension K’ of K in
K and a basis B of W over BT dR.A fixed under the action of Hg+ a. The L/t dR.A"
module W’ generated by B co1nc1des with WHx".a (it is thus stable under the
action of Hx a/Hg' A ~ Gal(K! /Ks)?) and is free of rank d. Moreover,
B:{R A ®L’+ W' — W is an isomorphism of BdR a-Tepresentations of Hy .

As LdRA —> LdRA is finite Galois étale with Galois group Hrxa/Hg' A =~
Gal(K! /Kx)? (cf Corolary, we have LdR,A IR W!Hw.a/Hir a X 7t
by Galois descent, and W/H<a/Hxa — WHra ig projective of rank d
over L('IR A- Extending the scalars to BIR A provides the isomorphism
B:{R A ®|—IR AWHK«A — W of BIR a-representations of Hi A. O

Corollary 5.6. (cf [16]) Let W1, Wy be free BIR A-representations of Hy a.
Then

H H
HOmRepBIRA(HK,A)(WI; Wa) ~ Hom ¢ (Wiia e

and Extren . (g7,.0) (W1, W2) =0
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+ Hy,n + Hy,n
Proof. We have BdR’A ®LIR,AW1 ~ W1 and BdR,A ®LIR,A 9 ~ Wy,
thus
Homg: (Wi, W) = Homgs  (Blga®r W% Bl A ® )
BJR,A LYWz, = B:R,A dR,A LIR,A 1 » ZdR,A LIR,A 2

—nt+ Hg a Hg a
- BdR:A ®LIR.,A HomLIR,,A (Wl 12 )

as B(J{R a-Tepresentations of Hi a. Taking invariants under Hg A provides
an isomorphism

~ Hry,n Hp
HomRepBIR A(HK,A)(WI’ WQ) ~ H0m|_d+mA (Wl , Wo )

HK,A HK,A . . . _l’_ . HK,A
(recall that HomLIKA (I/V1 s Wy ) is projective over L dR,A Since Wi
H
and W, "% are). Moreover, we have
1
EXtRepBJr (HK,A)(WI’ WQ)
dR,A
- EXtRePB+ (Hr,a) ( BdR7A’ HomBIR,A (Wl’ WZ))
dR,A

~ Hl + Hyg A Hg A

~H (HK,A, BdR,A ®L3—R,A HomLIR,A (Wl y Wy ))

~ nl + Hg A Hg A

~H (HK,Aa BdR,A) ®LIR,A HomL:R,A (Wl , Wy )

= {0}

since  Hom . (WlHK'A, QHK’A) is a projective Ll ,-module and
HY(Hk a,Blz o) = {0} by Corollary O

Definition. We say a L('IR A-module X is potentially free if there exists a fi-
nite extension K’ of K in K such that LQR A ®L<JJrR,A X is a free LEﬁC& A-module
of finite rank. We denote by 1\/Iodpf(L§R A) the corresponding category.

Corollary 5.7. The functors

RengR,A(HKVA) — Mod”f(L;R’A) and RepE:mA(GK,A) — ReprIn,A(FK’A)
W s Whs W s Whs

are equivalences of categories.
5.8. Decompletion along Ka o/Ka

Definition. Let X be a L(TR’ a-representation of I'g A.



72 O. Brinon, B. Chiarellotto, and N. Mazzari

(i) If X is killed by Fil"™ Lt Lir a for some r € N, we denote by Xy the
union of its sub-Ka-modules of finite type that are stable under the
action of I' A (this is the set of elements in X whose orbit under ' A
generates a Ka-module of finite type). Note that this matches with
definition of in the case r = 0.

(ii) In the general case, we put X¢ = 1# m (X/Fil™! Lip A X)),

Note that X5 is a sub—I:fR A-module of X and is stable by the action of I' A.

Proposition 5.9. Let r€N and X a free L:{R N Film+1 LdRA
representation of rank d of TI'xa. Then X¢ is free of rank d over
dRA/ Fil L dRA7 and the natural map

+
Lar.a @i, X = X
is an isomorphism of LIRA—TepTesentations of F}“{A.

Proof. The proof is similar to that of [3, Proposition 3.17]. We use induc-
tion on r, the case r = 0 being Corollary m assume r > 0. Put X’ =
Fll’" LgR AX: this is a free LA representation of rank d(’d“S 1) of I'k, A, and

X/X’ (L dr.a/ Fil"L dR A) ®px  X: this is a free dRA/ Fil" L dRA
representatlon of rank d of T K,A- By the induction hypothesis and Corol-
lary [3:24] the natural maps

LA ®K. o X{— X'
+ " "
LdR,A ®IIR,A X{: _> X

are isomorphisms. In particular, we can find a basis B” of X” over
dR A/ Fil” LérR A such that the cocycle U’ giving the action of ' A on X” in
the basis 98" has values in GLg(I%; dra/ Fil” It lir.a)- Let B be a basis of X over
dRA/ Fil™+! LdRA lifting ®B”: by construction, the cocycle U giving the ac-
tion of I'g A on X in the basis B has values in GLg (pr;- (dR A/ Fil" dRA))
where pr,.: dRA/ Fil™ ! L:{RA — L:{R’A/ Fil” L:{R,A is the canonical surjec-
tion. By Lemma [5.2, we have
pr (14, dra/ FiMlGg A) = ldr.a/ Fil™+! IR e (Lir.a)
= Koo,A,<r[Ta]a€A ® grr(L(;rR’A)

where Koo A <r[Tt]aca is the sub- Ko, aA-module of elements in Koo A[Ta]aca
of total degree < r. For all g € ' A, we thus can write uniquely U, = U;' +
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ﬁ where ﬁ € GLy(Kso,A,<r[Ta)aca) and U € My(gr” LdRA) Note that U"
is a lift of U”, but it is not a cocycle As 'k, is finitely generated, we can
find n > ng (cf Proposition such that U” € GLy(Kn,A <r[Talaca) for
all g € ' A.

Recall that if o € A, there is a L a\{a}n-linear and 'k A- equivariant
projector Ry, o1 La — LA A\{a}n (¢f notations before Theorem [3.4)). They
commute to each other: their composite provides a K, a-linear prOJector
Roa: La — KA. We extend R, A to gr (LdRA) by putting R, A(ta) = ta
for all a € A (cf Lemma [5.2). As U is a cocycle, we have Ugy = Ugg(Uy)
i.e.

0, + Uy = (07 + 0,)o(02 +0)
= 079(02) + 0Jg(0) + Ty (01)

for all g,7 € 'g ., since ﬁgg(fjfy) =0 in Mg(L} R/ Fil™+1 LdR A)s a8
Fil* Ljg o C Fil'™™ L3 A+ Applying Ry A, we get

(75,1/7 + R",A(ﬁgv) = 17;’9((7;’) + (7;9 (Rn.a (ﬁy)) + Rp A (ﬁg)g(ﬁé’)
= (U} + Rua(Ug))9(Ul + Rua(Uy))

since R, A is Kjpa-linear and I'x a-equivariant. If we put Uén) =
U"—i—RnA(U) for all ge€Tka, this means that U, I'ra—
GlLy (dRA/ Film 1t IR A) is a cocycle. For g € ' A, put ﬁén) =U, - Uén) €
Md (gr LdRA) By the computation above (with U™ and U™ instead of
U” and U), we have

U+ O = U (U) + 00 E) + T30 U1

so that
U = UMg(U) + UM g(US) = Ugg (US) + UM (U5)

since U™ is a cocycle. This means that U™ is a cocycle that defines an
extension of La ®_ , X{ by La ®k_, , X{ as La-representations of ' a.
By Corollary this extension comes from an extension of X{' by X{
as K a-representations of I' A, by extension of scalars: there exists N &
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Mg(gr” LIR,A) such that
U™ + Ugg(N) — NUy € My(gr" g5 )

forall g € 'k a. Now put B =I5 +N € GLg(L dRA) for all g € I', A we have

(Ia—N) (U™ + U§) (1a +9(N))
= UM + UM — NU™ + UM g(N) € GLy(Ig o/ Fil ™ I35 0)-

B_IUQQ( )

This means that if we make a change of basis from B using B, we reduce
to the case where the cocycle U takes values in GLg(I}; R, N Fll’drl dRA)
Proposition |3.22| then shows that Xt is nothing but the IdR A/ FilFHHIS, lir. A~
span of the basis just constructed: in particular, it is free, and the map

+
Lar,a @i, , Xf = X
is an isomorphism of L(‘;R a-Tepresentations of I‘} A (I

Proposition 5.10. Let X le a free LIR a-representation of rank d of I'g A
Then Xs is free of rank d over IIRA, and the natural map

L(JirR’A ®|3—R,A Xir— X

is an isomorphism of LgRA-representations of F}A. Moreover, X5 is the
union of the sub—IIRA—modules of X that are of finite type and stable under
the action of T'g A.

Proof. For r € N, put X, = (L(TR N Film+1 L(TR A) IR X. This is a free
L(J{R’A/ Filr+1 L(J{R A-Tepresentation of rank d of I'g A.

|7"+1

By Proposition E X, ¢ is a free It dR.A / Fi dR a-representation of rank

d of 'k A, and the natural map LdRA ®|:R1A va — X, is an isomor-
phism of LXR N Film+1 LXR a-representations of 'k A. The maps X, —
X, are surjective: so are the maps X,,+1f — X, ¢ by faithful flatness of

dRA/ Fil™ ! L(J{RA over IdRA/ Fil™ ™11 lir A (¢f Lemma ) This implies
that any basis of X, ¢ can be lifted to a basis of XT+17f by induction,
we can construct a sequence (B,),cn such that 9B, is a basis of X, ¢ over
dRA/ Fil™ 1 |§RA and is the image of B,4; in (dRA/ Fil™ 1| dRA) St .
XT+1,f for all » € N. This sequence defines a basis B of Xf = L Xrf over

T
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I$R7 A- By extension of scalars, ‘B is a basis of X over L&LR A as well, so that
the natural map

+
LdR,A ®IIR,A Xf — X

is an isomorphism of L:iFR, a-representations of I'k A

Let X{ be the union of the sub—I;fR’ A-modules of X that are of finite
type and stable under the action of I'x A: we have Xf C Xli. The reverse
inclusion is checked modulo Fil™*! I:{R A for all € N. Let Y be a finite
type sub-IT; dR, A—module of X that is stable under the action of I'k A, and
Y, = (dR N Fir+l+ I, A) B, Y C X, (¢f Lemma . Let y1,...,ys be
a generating family of Y, over I(J{R Aand gi,..., gy @ ﬁnite set of topological

generators of I' i A. There exists n € N and coefficients (cg?)1<i,j<s in K, A
i 17 =

<a<u
B sas

such that g,(y;) = E .. This implies that for all m > n, the sub-K,, a-

module Y, ,,, of Y, generated by y1,...,ys is stable under the action of I' A:
we have Y,.,, C X, ¢. As Y, = |J Y, m, we thus have Y, C X, +. O

m>n

Theorem 5.11. The functor

I{epg$LA(G¥QA)<_>I{ethA(FR:A)

HK A
Wi (W)
1$ an equivalence of categories.
Proof. This follows from Corollary and Proposition [5.10 O
Notation. Put Lar,A = L(J{RA [i] and lar,A = I:{R,A [i] =

KA,oo[[taﬂ [i}aeA‘ We have |dR,A C LdR,A = HO(HK’A, BdR,A)-

Definition. (1) A lattice of a free Bqr aA-module (resp. lqgr, o-module) M
of finite rank, is a sub—BgR A-module (resp. sub—I:{R A-mmodule) gener-
ated by a basis of M.

(2) The category of regular representations ReprBengyA(GK,A) (resp.

Replr:fA(FKA)) is the isogeny category of Repg+ (Gk,a) (resp.
dR,A

Repﬁ (T'k.A)), i.e. the category whose objects are free Bgg a-

modules (resp. lar,a-modules) of finite rank endowed with a semi-
linear action of G A (resp. 'k a), and admitting a G g a-stable (resp.
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I'k,a-stable) lattice which defines an object of Repg+  (Gk,a) (resp.
Rep;  (Txa))-

Theorem 5.12. The functor

Repg® (Gra) — Rep|® (Tka)

BdR,A |dR,A

induced by that of Theorem [5.11] is an equivalence of categories.

5.13. The module with connection associated with a

I;l'_R’ a-representation
Notation. Let Qt = QER K (resp. Q=" WJKa.) be the N
module of continuous K oo-differentials of s dR.A (resp. lgr,a) having poles

of order <1 on the divisor (ta = 0). This is the free Iz ,-module (resp.

dtia )aEA'

lgr, A-module) with basis (

Definition. A module with connection over |:er A is a free IIR A-module Y
of finite rank equipped with a KA o-linear map

Vy:Y =Y, OF

satisfying the Leibniz rule: Vy(Ay) =y ®dy+ AVy(y) for all A € IdRA
and y €Y. If Y] and Y, are two modules with connection over [T dR.A
we endow Y1 @+ Y3 (resp. Hom: A(Y]_,YQ)) with the connection Vy, ®
ldy, + Idy, ®Vy2 (resp f=Vy,o f (f ®Ildg+) o Vy,). A morphism be-
tween two modules with connection is an horizontal |<J:1FR, a-linear map. This
defines a tensor category denoted %l

Similarly, one defines the category %ﬁdR a of free lqr A-modules of finite
rank with connection. If (Y, Vy) € %, ., the connection Vy is said regu-
lar if there exists a lattice Y in Y such that Vy(Y) C Y ®'IR,A QT so that
(V. Vyp) € %z, - We denote %reg the full subcategory of %, , made of
modules with regular connection.

Notation. Let YERep|+ (Ck,a). If r7eN, the quotient Y, :=
LA

(dRA/ Fil™ 1 dRA) ®;  Yisafree Iz{RA/ Fil™ ! |dR A-module of finite rank
endowed with a continuous semi-linear action of T K,A: in particular, it de-
fines an object of Repg(ﬁm (I'k,A) (¢f Lemma . The infinitesimal action
of ' A on Y, provides Sen operators (Vy, o)aca: these are Ka oo-linear
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endomorphisms of Y, characterized by the fact that for all y € Y,., there ex-
ists an open normal subgroup 'k A, <<I'x A such that for all o« € A and
v € Tka NTk Ay, we have (y) = exp (log(x(7))Vy,.a)y (cf Section.

These maps are compatible as r grows: we thus obtain Ka -linear en-
domorphisms (Vy,q)aeca of Y such that for all y € Y and all r € N, there
exists an open normal subgroup 'k A y» < I'k A such that for all « € A and
v € 'k, NIk, A y,r, We have

v(y) = exp (log(x(’y))Vy“a)y mod (FI|T+1 GLRA)Y

Proposition  5.14. Let Y € Repi: (I'ka) and a€A.  Then
Vy.a(Y()) =v(Vyaly)) for all ye Y and v e€Tka. Moreover, if
y €Y and B € A, we have

gV 1 o
VY,a(tlgy) — B Y,a(y) fﬁ 7& '
tay +taVyaly) if =«
Proof. This is checked modulo Fil"*! for all r € N. The first statement fol-

lows from the corresponding property of Sen operators. For the second one,

fix y € Y;.: we have Vy, ,(tgy) = A/éilEIPl(a %)(_t)ﬁ)y If y €Tk, and 8 # «, we

y—Id
have v(tgy) = tgy(y), so that Vy, o(tgy) = t3Vy. o(y): assume = a. We

have v(tay) = Xx(7)ta(y), so that

Way) ~tay _ x(Wtay(W) —tay _ (X(v) —Lw 1Y) — y)
log(x(7) log(x(7) log(x(7) log(x(7)

which converges to to(y + Vy, (y)) as v converges to Id. O

Definition. Let Y ¢ ReplIR A(I‘KA). IfyeY, we put
=Y Vyaly) ®—EY®|+AQ+.
acA ta

Proposition 5.15. LetY € Rep,;rR A(FKA)' The map Vy is an integrable
connection. ’

Proof. The Leibniz rule follows from Proposition [5.14] and the integrability
from the fact that I'x A is abelian. O
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We thus have a functor
f
RepIIR,A (FK’A) - %IIR A
which induces functors

Replr:g (Tr.A) = %’E‘iA and Replgedg&A (Gr.A) = %2 .

R,A lar, A"

Let Y € ReplijA(FKA)' If yecYlxa we have Vy,(y) =0 for all

a € A, hence Vy(y) = 0. By KA -linearity, the inclusion ylxa c yVy=0
induces a map

v (Y): Kp oo ®p, YiEa oy Vr=0,

Proposition 5.16. The Ka-module YI'<2 s of finite type and the map
ev(Y) is an isomorphism.

Proof. If r € N, put Y, = (dRA/ Fil™ 1] dRA) ®¢  Y: this is an object of
Rep'}(Am(FKA). Put also

Y0 =y eV,; (Vae A)Vy (y) =0}

(this is a an abuse of notation since Vy does not make sense on Y;). By
Proposition the natural map
s

N e O

is an KA oo-linear isomorphism. We have yVyr=0— @Y}VY:O, so in partic-

T
ular the inverse limit of the above isomorphisms is an isomorphism

Hm KA oo ®Ka yea By V=0,
T
Similarly, we have YTxa = l'&nYE’“A The exact sequence

0—=>gr'Y—=>Y.1—-Y,. =0
induces the exact sequence

0— (grY) ™ s yiss 5 yles,
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We have gr" Y ~ @ Yl(ﬂ), so that (grr Y)FK,A ~ @ (}q(ﬂ))FK,A' By
neN2 neNA
|n|=r |n|=r

Proposition again, we know that (V3 (@))FK‘A = {0} for all but finitely
many values of n. This implies that (gr"Y) Frea {0}, i.e. that the natural
map yhea o ylea g injective when r > 0. As Yy 4 is a Ka-module of

r+1
finite type (hence a Fy-space of finite dimension) for all » € N, this implies

that YTFflA — Y is in fact an isomorphism when r > 0. In particular,
the map YTxa — Vi s an isomorphism for r > 0 (this proves the first

part of the proposition), and m KA oo @K YA Kpoo @K, Yixa, O
T

5.17. Application to p-adic representations: link with
multivariate (¢, I')-modules

Let V € R,epQp (G}QA). Then BdR,A ®va € Rep;i:A(GK’A) (a GK,A'
. . . + reg
stable lattice being given by B A ®q,V € RedeR,A(GK,A)). Put

Dair(V) = ((Big a ®QPV)HK’A)f

and Dgis(V') = lgr.A it D;’if(V). By what precedes, this provides objects
in % and 7N respectively.

We have Dgir(V) = Dy (V) [ ], D (V)2 = (B o ®q, V)% and
Daie (V)4 = Dgr(V).

Proposition 5.18. (cf [3, Proposition 7.1]) Let V € Repq (Gka). Then
V is de Rham if and only if Dgie(V) is trivial (as a module with connection).

Proof. Assume V is de Rham: there exists n € Z% such that V(n)
has Hodge-Tate weight whose components are all non-positive, so that
Dar(V(n)) = DiR(V(n)) =: (BZ;R,A ®QPV(Q))GKA. The map aqr (V) is an
isomorphism, hence

agr: Bara ®Ks Dar(V() = Big A ®q,V(n)

is injective with cokernel killed by ta. Taking invariants under Hg A, we get
an injective map

9: Lir.a ®rs Dap(V(1) = (Big A ®va(ﬂ))HK‘A
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whose cokernel is killed by some power of tA. The commutative diagram

LD (V)

lir.a ®Ka Dgr(V (1))

9
LIR,A QKA DKR(V(E)) - (BQ—R,A ®QPV(@))HK‘A

shows that f is injective. If y € DJ(V(n)), there exists N € N such that
tNy € Im(g) N D (V(n)). By definition of the functor X — X, this shows
that tNy € I;IFRA ®K, Dge(V(n)). The cokernel of f is thus of ¢A-torsion, so
that f induces an isomorphism

lar,a @k DR (V(n)) = Dgis(V(n)) = Dair(V)

which implies that Dgif(V') is trivial (as a module with connection).
Conversely, assume that Y := Dg;f(V) is trivial as a module with con-
nection over lgr A: the natural map

IdR,A OKa o yVr=0 vy

is an isomorphism. As YVv=Vis a K A,oo-inodule of finite type, there exists
n € N such that YV¥=0 C ¢," D£.(V). Replacing V with V'(n) for an appro-
priate n € Z®, we may asume that n = 0, so that YVv=0 = D&(V)VY:O =
KA 0o @K, D(TR(V) (the last equality by Proposition [5.16). Extending the
scalars from KA o to Bgr,a, we deduce that

OédR(V): BdR,A QKa D(—IR(V) — BdR,A ®va

is an isomorphism, i.e. that V is de Rham. O

Now we relate our constructions to multivariate overconvergent (¢, T')-
modules. These were constructed in [20] and [12], under the hypothesis that
K is a finite extension of Q,, what we thus assume henceforth. We start by
recalling the definitions and results we will need from [20] and [12]. In the
classical, univariate case, put

Ap, = { Zanw”; (VneZ)a, e Wk) lim a,= 0}

n——oo
neZ

where w is seen as a variable. This is a Cohen ring for the field Ep, = k((@)).
We equip Ap, with the commuting (semi-linear) Frobenius operator and
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I'p,-action given by
o(w)=(14@)? -1 and v(w) = (1 + @)X — 1.

Put Br, = Frac(Afp,) = Ap, [%] and let By the maximal unramified exten-
sion of Bp,: this is a DVF with uniformizer p and whose residue field E is a
separable closure of Ef,. We have an injective morphism Ap, — A := W(Cb)
sending w to [¢] — 1. It extends into an injective map A — A, where A is
the p-adic completion of the ring of integers of By . There is a Frobenius
operator ¢ and a action of G, on B = A[%] so that the previous map is
G F,-equivariant and compatible with Frobenius. Moreover, there is an iso-
morphism Hp, ~ Gal(B /Bpg,). As Hx < Hp,, we put Bg = B« this is a
finite Galois extension of By, and there exists an element wg € Bg such
that its ring of integers

Ax = { 3wl (Vo€ Zya, € W(K) lim a, = o}

n——oo
neZ

where k' is the residue field of K. This is a Cohen ring for the field Efx =:
Ex =K (@k))-

By [15], the functor T+ (A ®z, T)"* induces an equivalence between
Repyz (Gk) and the category Modf}iK (p,I') of étale (¢,I')-modules over
A i, whose objects are A g-modules of finite type endowed with commuting
and semi-linear Frobenius operator and I' g-action, such that linearization of
the Frobenius operator is an isomorphism. By inverting p, there is a similar
equivalence between the isogeny categories.

The multivariate generalization of Fontaine result was proved in [26]: let
Ak A be the p-adic completion of the tensor product Ax ®z - - ®z, Ag
where the copies of Ak are indexed by A (the copy of Ax of index a € A
will be denoted Ak o), and Bg Ao = Ag A [%] . Wehave Ag aA/(p) =t Exa =
Ex ®F, - ®r, Ex (where the copies of Ex are indexed by A). For each
a e A, let ¢, and ' o = ta(I'x) denote the actions of ¢ and I'x on the
factor of index « fixing the other factors. Denote by @A the monoid generated
by the ¢, for a € A. There exists a multivariate analogues of A and B: let
A (resp. Ba) be the p-adic completion of %A F.A Where F' runs over the

F

finite subextensions of K /K (resp. BA = A [%] ). These rings are endowed
with commuting actions of pa and Gg A, and Ax/(p) =~ liﬂEF,A. There is
F
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an equivalence of categories

Repz, (Gk.a) = Modjy, , (oa,Tk.a)
T+ (Ar ®z, T)HKA

where Repzp(G K,A) is the category of Z,-modules of finite type endowed
with a continuous linear action of G A, and Modi‘i}( (oA, Tr ) the cat-
egory of étale (pa,I'k A)-modules over Ag A, whose objects are finitely
generated projective A a-modules with commuting semilinear actions of
the ¢, for o € A and I'g A, and such that the linearization of ¢, is an
isomorphism for all « € A (¢f [12] §2.3] and [12, Theorem 4.1]). By invert-
ing p, there is a similar equivalence RepQP(GK,A) — Mod%KYA(gpA,I‘K’A)
between the corresponding isogeny categories.
On the other hand, Fontaine result was refined by Cherbonnier-Colmez
as follows. Let v” be the valuation on C” normalized by v”(p) = 1. If r € Q-,,
~ ~ o0
let AO71 C A be the subset made of those elements z = > p"[zy] (with
m=0
(Zm)men € (C*)N) such that W%gnoo 70°(2m) + m = +o0. Recall there are em-

beddings Agx C A — A: put Ag?’r} =AxgnN A7 and A0 = A 0 AO],

Inverting p, we define analogues B&?ﬂ c B, The subring of overconver-

gent elements in A (resp. A) is A}{ =U Ag’r] (resp. AT := | A(O”’]).
r>0 r>0
Inverting p, we define analogues BE( C BT (these are fields). Those rings

are stable under the action of G, and we have (A(C7)Hrx = Agg’r] and
(ADHHx = A}{. Moreover, we have Ep(A(O’T]) c AOr/Pl 5o that AT and AJ}(
are stable under ¢. Defining Modif (¢,T) similarly as Mody , (¢,T), we
have: “

Theorem 5.19. ([13, Proposition I11.5.1 & corollaire II1.5.2]) The functor

Repy (Gk) — MOdi;{(% )
T — (Al @z, T)x

is an equivalence of categories.

This result was extended to the multivariate case in [20] and [12].

If € Rso, let A;%’T}A C Afp,,A be the subring made of those elements
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> (@) @+ @ (an, @) (with (an,, . .., an,) € W(k)?) such that

‘ 1|1£>n Up(an, +* - an,) + 55 min{n, ..., ns} = +o0.
n o0

Put A}O A= U A;E)"“]A C Afp, A and BTF A= A} A [%] The subrings
) T€R>0 0y 0y 0y

AI% A and BTF0 A of Bp, A are stable by pa and I'g, A. In this context, the

analogue of AT is constructed as follows. For a finite subextension F of K /F

and r € Q.(, we put AQ’QO = A(O’T] ®z, " Qz A(Oﬂ (where the copies

of A(O’T] are indexed by A), and Agg = A(0 " A ®ppr A%A]O We have

(07’ %A — A07] ®z, @z, A0, Put A(O 7“] A(O 7] L @40, o
A(0 "] and Al = U AOT} Invertin, t B(0 Bl Th
Ao A= g p we get rings C Db, ese
r>0
Hrn —

rings admit an actlon of Gk a. By [20, Lemma 3.2.1], we have (AT )

A;(A - Uo AK A} Moreover, if o € A, we have an operator ¢, : A(AO’T} —
r>

, so that there is an action of pa on ATA and BTA. The natural map
Al = A, (induced by the maps AY") — A, extended by AlY linearity)
is Gk A and pa-equivariant. The generalization of Theorem is:

NG

Theorem 5.20. ([20, Corollary 3.4.4], [12, Theorem 6.15]) The functor
DT; Repzp(G[gA) — MOdf&tLA(SOA’FKvA)
T (Al @z T)x

where the target category is defined similarly as Mod‘fAEK’A (pa,T'rA), is an
equivalence of categories.

Moreover, by [20, Theorem 3.4.2] and [12, Theorem 6.14], base extension
to A A over A;( A induces an equivalence of categories

Mod%, (pa,Tx.a) 3 Mod§, , (va,Tk.a)-
K,A 5

Notation. If T € Repy (Gka) and 7€ Q.y, we put DO (T) =

(A( }® T)HKA This is an A( A} module endowed with an action of
kA Moreover for each o € A, the operator ¢, induces a semi-linear map
DO, r]( ) — DO, r/p]( ).
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Lemma 5.21. Let T' € Repz, (Gk,a) be free of rank d. There exists rp €
Q- such that for all r € QNI0, 77|, the natural map

aOT): AST 6y DOT) AL g, T

is an isomorphism and D] (T') is projective of rank d over Ag?’g].
Proof. The A}( A-module D(T) is projective of finite type: we can find a

finite set (a;)1<i<s generating the unit ideal in AJ}( A such that the localiza-

tion DY(T),, is free of rank d = rkz, (T)) over (A}{A) forall i € {1,...,s}.

(O TT]

We can choose r € Q- small enough such that a; € A}, and there ex-

ists a (A}(A)ai—basm (2i)1<j<d of D'(T),, made of elements in DOr7l(T),,.
d

foralli € {1,...,s}. Put D; = @ (AL(T)), #;; € DO(T),,. By Theo-
. 1 ) k3

‘]:
rem the natural map

of(1): Al @, DI(T) —» Al @z, T

is an isomorphism. Localizing, this provides an isomorphism
(AL),, ®a; , D'(T) = (A}), ®z, T, which implies that the localization
(@©rrl(T)), (AR ® a0y DOI(T) = = (AR ®g, T is injective.
In the basis (1® z; j)1<]<d and the basis induced by any basis of T over
Z,, this isomorphism is given by a matrix M; € GL4 ((AT ) ) Shrinking

rr further if necessary, we may assume that M; € GLy4 ((A(O TT]) ) This
means that the composite map '

(A(AOJT}) Bl Di— (A(A[)7TT})ai EIN DOrrl(T)

(Ol(O,TT](T))ai (A(AO,TT])ai ®Z T

P

is an isomorphism. This implies that (a(O77](T)),. is surjective, hence an

isomorphism, so that the map (A(AO’TT])M ® p @7 D; — (A(AO’TT])ai RN

DO77](T) is an isomorphism as well. Taking invariants under H K,A implies

that the map D; — (Agg’f])ab ® p O] D(0.rr] (T') is an isomorphism. As this
’ z K,A

holds for all i € {1,...,s}, this shows that o(®7](T) is an isomorphism and

that DOT7l(T) is prOJectlve of rank d over A(0 mr] This implies that the
similar statement holds when rr is replaced by any r e Qn]o,rr]. O
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If neNsy and r>r,:= W, there is an injective map
in: AT Biz such that i,(w)= [e/P"] —1 = e exp(t/p™) —1 and
in(Agﬂ) C K,[t] (¢f [14, Proposition III.2.1]). The tensor product of these
maps, indexed by A, induces a ring homomorphism

ina: ALY — Q) Bl = Bina
a€A

(note that it is not injective in general, since the tensor product in the LHS
is taken over Z, whereas it is taken over Fy in the RHS). It restricts into a
ring homomorphism

inA: AKAO—>®K ta]]—”dRA
aEA

Lemma 5.22. If r > max{r,,op~ "}, the restriction of in a to A;%’Ti o ex-

tends into a map AE%TAA — Fooolta] = g A-

Proof. This is checked modulo Fil**! I(J{RA for all seN. If x=

3 (n,@™) @ -+ ® (an,@™) € A;%’Ti, we have to check that the
nezZ® '

series  ip A(Z) = D Gp, - py H (e™ exp(ta,/p") —1)™ converges in

ncZ®
Fo,oo[ta]aeA/(ta)ZElA for the p—adlc topology. For each n € Z*, we have
é ", 0 n; .

IT (e expttan /™) 1) =TT (32 1m0 () explhita /)
i=1 =1 k;=0

é n;

n n; n; —k; n)\ ki (n; n

=TT = 1 4 30 (1 () () explitan ™) — 1)

=1 k;=0
Ifm=(mi,...,ms) € NA7 the coefficient of 7't - - - 1317 in the latter expres-
sion is

2 ,
(n) lgiég “ ni—k; (_(n) ki /. k. \™M;
e = (€ =)= T (D (0m 7 ™) () (5)™)
1<i<6 k=0
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whose valuation is larger that é( > nz) — n|m|. The coefficient

—1)pn—1

(p—1)p 1Gks

mi:0
of tf)t---t3 in ipa(x) is the sum of the series »  an, ---an;Com. If

nezZ®
n € Z», we have Up(@n, «* QpyCrm) > ﬁ( > nz) —n|m| if p, =
! M (r—Dp 5 n
<i<d

min{ny,...,ns) > 0, and this goes to +o0o when |n| — co. Assume p, < 0:

we have

Vp(n, - AnsCrm) = Vp(an, - any) + pTTplﬂﬂ + vp(Cnm) — pr—pl Hn

> vp(an, -+ any) + 5574 + W Z n; —nlm| — P p

1<i<§
m=0
> Vp(an, +ang) + 32t + i Okn — nlm| — i
> Up(anl Cang) + pTTleQ —n|m| + ]ﬁ(% - T)Nﬂ
> vp(an, -+ Any) + pr_pluﬂ —n|m|.
As lim vp(an, - -an,) + }% min{ni,...,ns} = +oo by hypothesis, this
Shov!/ﬂs‘?lrc;;t the series indeed converges. O

If r > max{r,,dp~"}, Lemma implies that BXR A Is equipped with
a Ag’i—algebra structure: the map i, a: A(A():Z] — B§R7 A extends into a ring
homomorphism
. 0,
in,A: A(A "] — Bji_R,A'
Theorem 5.23. Let T' € Repy (Gk,a). If r € Qs is small enough, there
is a I'g a-equivariant isomorphism of I(J{R A-Mmodules

.2 @0y DO7(T) 5 D (T[1)).

Proof. By Lemma there exists rp € Qs such that for all r e
Q N0, 7], the natural map

A(onr} ®A§?£] D(Oﬂ”} (T) N A(onr] ®Zp T

is a G a-equivariant isomorphism. Take n € N+ large enough such that
max{ry,,op~"} < rp, and assume that r € Q- is such that max{r,,dp~"} <
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r < rp. Extending the scalars to B(J{R A Via i, A provides a Gk a-equivariant
isomorphism

BjirR,A EINON DO N(T) — BjirR,A ®z,T ~ BjirR,A Oltea Dai(V)

where V =T [%] € Repq (Gk,a). Taking invariants under Hp A gives a
Ik, a-equivariant isomorphism

+ 0, ~p +
Lir.a ®acy DOUT) S Lk o Bt Daie(V)-
Applying the functor X — X¢ provides an isomorphism

(Lir.a ®a@ DOI(T)) 5 Dge(V)

and it remains to show that (Ljz A D pr) D] (T))f =15%A N,

DO, As DOTI(T) is projective of finite rank over Agg’g], it is enough

to show that DO7N(T) is mapped to Dj¢(V) by ina. By [20, Lemma

3.2.4], we have D'(T) = A}OA®A+ . (ATAO®ZP T)HK’A: similarly, we
’ Fo,A,0 I

have DO7)(T) = Ag’g ®A§90'1, (A(Aojz] ®z, T)HK’A, so we are reduced to

check that (A(AO’Z] ®z, T)HK’A maps to DL (V) by i, a. Working compo-
nentwise, this follows from [5, Proposition 5.7]. O

o
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