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A conjecture recently stated by Flach and Morin relates the 
action of the monodromy on the Galois invariant part of the 
p-adic Beilinson–Hyodo–Kato cohomology of the generic fiber 
of a scheme defined over a DVR of mixed characteristic to (the 
cohomology of) its special fiber. We prove the conjecture in 
the case that the special fiber of the given arithmetic scheme 
is also a fiber of a geometric family over a curve in positive 
characteristic.
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1. Introduction

Fix a prime number p. Let K/Qp be a finite extension with ring of integers OK and 
residue field k. Let W = W (k) be the ring of Witt vectors of k and let K0 be its fraction 
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field. We write S = Spec(W ), and in the context of log structures we write S× (resp. S∅) 
for S equipped with the canonical log structure 1 �→ 0 (resp. the trivial log structure).

Let f : X → Spec(OK) be a flat, projective morphism of relative dimension n. We 
write Xs and Xs for its special and geometric special fiber, respectively, and Xη and Xη

for its generic and geometric generic fibers, respectively. In [11, §7], Flach and Morin 
speculate on the relationship between the geometric cohomology theories of the generic 
and special fibers. The geometric cohomology groups of the generic fiber

X �→ HB,i
HK(Xη,h)

are the Beilinson–Hyodo–Kato ones, considered in [17] and taking values in the category 
of (φ, N, GK)-modules (for more on this structure see, for example, [4]). This cohomology 
theory was defined by Beilinson for any K-scheme Z, neither smooth nor proper, using 
h-descent [1].4

Moreover, when the morphism f is smooth or log-smooth, there are canonical isomor-
phisms between Beilinson–Hyodo–Kato cohomology and the cohomology of the geometric 
special fiber: namely, if f is smooth then it coincides with crystalline cohomology of the 
geometric special fiber Xs and if f is log-smooth then it coincides with the log-crystalline 
(Hyodo–Kato) cohomology of Xs (see [11, §7.2]).

The p-adic Weil cohomology theory for varieties Y/k is rigid cohomology (with coef-
ficients in K0)

Y �→ Hi
rig(Y )

taking values in the category of ϕ-modules, i.e., finite-dimensional K0-vector spaces with 
a Frobenius-semilinear endomorphism ϕ. In their article, Flach and Morin conjecture the 
following relationship between the two cohomology theories:

Conjecture. ([11, Conjecture 7.15]) For regular X of absolute dimension d = n +1 there 
is an exact triangle in the category of ϕ-modules

RΓrig(Xs)
sp−→

[
RΓB

HK(Xη,h)GK
N−→ RΓB

HK(Xη,h)(−1)GK

]
sp′

−−→

RΓ∗
rig(Xs)(−d)[−2d + 1] →,

where sp induces the specialization map defined in [22] and sp′ is the composite of the 
Poincaré duality isomorphism

4 The Beilinson–Hyodo–Kato is related to p-adic étale cohomology via the Fontaine functor Dpst, namely

H
B,i
HK(Xη,h) ∼= Dpst(Hi(Xη,Qp)) := colimH≤GK,open(Bst ⊗K0 H

i(Xη,Qp))H ,

but we will not use this fact.
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RΓB
HK(Xη,h)(−1) ∼= RΓB

HK(Xη,h)∗(−d)[−2d + 2]

on Xη and sp∗.

We can reformulate this conjecture in the case where f is log-smooth using existing 
comparisons between the cohomology of special and generic fibers. Namely, under this 
extra condition, we already have a comparison between the cohomology of the special 
and generic fibers: Tsuji’s theorem [20, Theorem 0.2] provides a canonical isomorphism

HB,i
HK(Xη,h)GK ∼= Hi

log-crys(Xk/S
×).

We thereby obtain the following crystalline realization of this exact triangle in the cate-
gory of ϕ-modules:

RΓrig(Xs) →
[
RΓlog-crys(Xs/S

×) N−→ RΓlog-crys(Xs/S
×)(−1)

]
→ (1)

RΓ∗
rig(Xs)(−n− 1)[−2n− 1] → .

Thus, in the log-smooth case, the conjecture describes the monodromy operator on the 
log-crystalline cohomology of Xs in terms of rigid cohomology and its Poincaré dual.

Since the triangle (1) no longer involves the generic fiber Xη or the valuation ring OK , 
one can untwine the triangle from its original context and ask under what conditions 
on a k-scheme Xs such an exact triangle exists. The main result of this paper is the 
following theorem, which states that such an exact triangle exists when Xs is the special 
fiber, not of an arithmetic family f : X → Spec(OK), but a geometric family f : X → C

where C is a curve over k:

Theorem 1. Let f : X → C be a proper, flat, generically smooth morphism over k of 
relative dimension n, where C is a smooth curve and X is smooth. Assume that for some 
k-rational point s ∈ C the fiber Xs is a normal crossing divisor in X. Endow X with the 
log structure given by the divisor Xs and endow Xs itself with the pullback log-structure. 
Then there is an exact triangle

RΓ∗
rig(Xs)(−n− 1)[−2n− 1]

RΓrig(Xs)
[
RΓlog-crys(Xs/S

×) N−→ RΓlog-crys(Xs/S
×)(−1)

]
in the derived category of ϕ-modules.
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Our driving methodology is to adapt Chiarellotto and Tsuzuki’s proof [9] of the exis-
tence and exactness of the Clemens–Schmid sequence

· · · → Hm
rig(Xs)

γ−→ Hm
log-crys((Xs,Ms)/S×) ⊗K

Nm−−→

Hm
log-crys((Xs,Ms)/S×) ⊗K(−1) δ−→ Hm+2

Xs,rig(X) α−→ Hm+2
rig (Xs) → · · ·

together with the theory of log-convergent and log-rigid cohomology. In [9] the authors 
need to restrict themselves to the case of finite fields to prove their main result because 
they use [7]. Since in the present article we do not need to compare the monodromy 
and the weight filtrations, we can avoid this restriction. Another difference from [9] is 
that we prove a result at the level of the derived category of complexes and not just in 
cohomology.

The similarity between the Clemens–Schmid sequence and the Flach-Morin triangle 
is clear in light of Berthelot’s Poincaré duality [2], which states that the dual of rigid 
cohomology is given by the rigid cohomology with compact support

RΓXs,rig(Y ) ∼= RΓ∗
rig(Xs)(−n− 1)[−2n− 2]

where Y is a smooth k-scheme admitting a closed immersion Xs ↪→ Y ; in our context 
we may choose, in particular, Y = X.

We follow their general idea of linking the localization triangle for rigid cohomology 
with respect to the closed subscheme Xs with the canonical exact triangle for the mon-
odromy operator in log-crystalline cohomology, using the fact that the rigid cohomology 
of the open complement of a closed subscheme can be computed using logarithmic struc-
tures.

We work with log-rigid cohomology (see § 2) in place of log-crystalline cohomology 
because of the flexibility of the former. This is possible because log-crystalline and log-
rigid cohomology, and their respective monodromy operators, agree in the proper and 
log-smooth case (Lemma 4).

After the submission of this article, Binda–Gallauer–Vezzani showed in [5] how to 
deduce the Clemens–Schmid sequence and the Flach–Morin conjecture with motivic 
methods. While their approach proves the general case, our method is more explicit.
Acknowledgments. The authors thank Veronika Ertl for insightful conversations. They 
also warmly thank the referee for the valuable remarks that significantly improved the 
quality of the article.

2. Review of rigid cohomology

We begin by reviewing the basic concepts of rigid cohomology that we will need in 
the sequel. For the moment, we forget about log structures. A frame (X ⊆ Y ⊆ P) (see 
[15, Definition 3.1.5]) is a sequence of inclusions



B. Chiarellotto et al. / Journal of Number Theory 264 (2024) 27–40 31
X ↪→ Y ↪→ P

where X ↪→ Y is an open immersion of k-varieties and Y ↪→ P is a closed immersion in 
a formal W -scheme P.

Fix a frame (X ⊆ X ′ ⊆ P) where X, X ′, and P are separated and locally of finite 
type and where P is smooth in a neighborhood of X. The rigid cohomology of the pair 
(X, X ′) is defined as

RΓrig((X,X ′)) := RΓ(]X ′[P, j†XΩ•
]X′[P) , (2)

where j†X is the functor of overconvergent sections [15, p.129] and is denoted by j†]X[P
in [9]. In general, for a rigid analytic variety V and an admissible open T ⊂ V it is 
possible to define the functor j†V \T of overconvergent sections along T . When V ⊂]X ′[P
is a strict neighborhood of ]X[P and T = V ∩(]X ′[P\]X[P) we have j†X = j†V \T . A priori
the definition in (2) also depends on the formal scheme P, but it can be shown (see [15, 
7.4.2], for example) that it depends (up to quasi-isomorphism) only on the immersion 
X ↪→ X ′.

The two important cases of this construction that we use are the following. First, the 
convergent cohomology of X is defined to be

RΓconv(X) := RΓrig((X,X)).

Second, if X ↪→ X is an open immersion with X proper, the rigid cohomology of X is 
defined to be

RΓrig(X) := RΓrig((X,X)).

It is a fundamental result of the rigid cohomology theory established by Berthelot that 
this definition is not only independent of the formal scheme P, but also of the com-
pactification X (see [15, Proposition 8.2.1]). Note that if X is already proper, then the 
convergent cohomology coincides with the rigid cohomology.

To understand the dual RΓ∗
rig(Xs), we will also need the notion of rigid cohomology 

with support in a closed subset.

Definition 2. Let X be a k-scheme, Z ⊆ X a closed subscheme, and fix a frame (X ⊆
X ⊆ P) where X is proper and P is smooth in a neighborhood of X. We define

RΓZ,rig(X) := RΓ(]X[P ,Γ†
]Z[Pj†XΩ•

]X[P)

to be the rigid cohomology of X with support in Z. (see [2] or [15, Definition 6.3.1])

Its relation to standard rigid cohomology is as follows. As an immediate consequence 
of the definition (see [15, Proposition 5.2.4 (ii)]) we have, for any sheaf E on ]X[P, the 
following exact sequence
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0 → Γ†
Zj

†
XE → j†XE → j†]X[P\]Z[P

j†XE → 0 .

But by [15, Proposition 5.1.7], we get the exact sequence

0 → Γ†
Zj

†
XE → j†XE → j†UE → 0 ,

where U = X \ Z. In this way we obtain an exact sequence

0 → Γ†
]Z[Pj†XΩ•

]X[P → j†XΩ•
]X[P → j†UΩ•

]X[P → 0

which induces in cohomology the localization triangle

RΓZ,rig(X) → RΓrig(X) → RΓrig(U) +−→ .

There is a theory of log-rigid cohomology, described by Große-Klönne (see, for ex-
ample, [12]) that generalizes the log-crystalline cohomology of Hyodo and Kato in the 
same way that rigid cohomology generalizes crystalline cohomology. Here, we give a brief 
overview and refer the reader to [12, §1.3] for precise definitions.

Write S := Spf(W ) and let S× (resp. S∅) denote the weak formal log-scheme (S, 1 �→
0) (resp. (S, trivial)). Let X be a fine log-scheme over the log point s× = (Spec(k), 1 �→
0). One can choose an open covering X =

⋃
i∈I Vi with exact closed immersions Vi ↪→ Vi

and for each H ⊆ I let VH be an exactification

VH :=
⋂
i∈H

Vi → VH → lim←−−
i∈H

Vi ,

where the inverse limit is taken in the category of weak formal schemes over S. From 
these weak formal embeddings we can canonically construct a simplicial dagger space 
]V•[V• := (]VH [VH

)H⊆I . The cohomology of the corresponding de Rham complex

RΓlog-rig(X/S×) := RΓ(]V•[V• ,Ω•
]V•[V•

)

is defined as the log-rigid cohomology of X with respect to S×. It can be shown to be 
independent of the covering X =

⋃
i Vi.5

One can also define a logarithmic equivalent of convergent cohomology for a fine log 
scheme X/k, called log-convergent cohomology, which we denote by RΓlog-conv(X/S×). 
It is generally defined formally as the cohomology of the trivial isocrystal on the log-
convergent site ([19, §2.1]), but it also admits an interpretation through the cohomology 
of a suitable logarithmic de Rham complex [19, §2.1, Corollary 2.3.9]. In fact, by replacing 
weak formal schemes and dagger spaces with formal schemes and rigid spaces in the 

5 Although we will not use it, it might be of interest for the reader that the complex RΓlog-rig(Xs/S
×)

together with its monodromy operator can be calculated using the overconvergent logarithmic de Rham–
Witt complex of Gregory–Langer [13].
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definition of log-rigid cohomology, one recovers Shiho’s log-convergent cohomology [12, 
§1.5]. In particular, if X is proper, then log-convergent cohomology coincides with log-
rigid cohomology. If X is additionally log-smooth, these two cohomologies also coincide 
with log-crystalline cohomology [12, pp. 401].

Finally, we can also repeat the construction of log-rigid cohomology with S∅ to obtain 
cohomology groups RΓlog-rig(X/S∅). If now X is a k-scheme equipped with the trivial 
log structure, not necessarily proper, we have an isomorphism (see [12, pp. 401])

RΓlog-rig(X/S∅) ∼= RΓrig(X).

3. Proof of the main result

In this section we prove Theorem 1, stated in the Introduction.

Remark 3. Our setting is the derived category of ϕ-modules, and it will be implicit that 
all the quasi-isomorphisms below are compatible with Frobenius when the objects have 
a non-trivial structure of the ϕ-module.

Lemma 4. To prove Theorem 1, it suffices to construct an exact triangle as in the 
statement where RΓlog-crys(Xs/S

×) and its monodromy operator N are replaced by 
RΓlog-rig(Xs/S

×) and its monodromy operator.

Proof. By [19, Theorem 3.1.1] and [12, §1.5], there is a map

α : RΓlog-rig(Xs/S
×) → RΓlog-crys(Xs/S

×)

which is an isomorphism because we are in the proper and log-smooth case. The map α is 
obtained by considering that the log-rigid cohomology coincides with the log-convergent 
one and the latter can be calculated by classical tubes when the immersion is exact. 
Also, there is a natural map from these classical tubes to the divided-power ones which 
are used to calculate the log-crystalline cohomology (cf. [3, Proof of proposition 1.9]). In 
both cases, monodromy operators are defined as the connecting morphism arising from 
appropriate short exact sequences coming from an embedding system, which can be used 
for both cohomology theories: we can assume that the embedding system is exact, for 
instance as in [12, § 5.2]. The log-rigid one is detailed in [12, §5.4] and the log-crystalline 
one is analogous. �
Remark 5 (log-rigid comparison). Note that log-rigid cohomology over S× can alter-
natively be defined as [10]. The definition of Ertl–Yamada gives cohomology groups 
isomorphic to those of Große-Klönne [10, Remark 2.4]. In both cases, the monodromy 
operator is defined starting with a short exact sequence [10, eq. (3.36) and (3.37)] and 
[12, § 5.4] and there is a natural map between the two.
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In fact, in [10] the authors use an embedding system defined over W [[s]], while in 
[12] it is over W [s]†. The embedding system can be constructed as in [10, Lemma 2.6 
and Definition 2.7] both over W [s]† and over W [[s]], compatibly with the natural map 
W [s]† → W [[s]]. From this we get the map of short exact sequences and the monodromy 
is compatible because of isomorphism between log-rigid cohomology groups over S×.

As a first step, we reformulate the results of [9] entirely in the language of de-
rived categories. Note that the open inclusion X \ Xs → X induces a natural map 
ι : RΓrig(X, X) → RΓrig(X \ Xs, X). Moreover RΓrig(X, X) = RΓconv(X). First we 
prove

Lemma 6. There is a canonical isomorphism

RΓXs,rig(X) ∼= [ι : RΓconv(X) → RΓrig((X \Xs, X))]

where [−] denotes the homotopy limit.

In other words, RΓXs,rig(X) can be computed without passing to a compactification.

Proof. For our basic landscape to compute rigid cohomology, we fix, as in [9, §4], a 
simplicial Zariski hypercovering of the form

Xs,• X• X• P•

Xs X X

s C.

Here the simplicial map X• → X is a Zariski affine hypercovering, P• is a simplicial 
formal scheme separated and of finite type over OK which is smooth around X•, and 
which admits a Frobenius σ• lifting that on OK .6 Then by definition, we have

RΓXs,rig(X) = RΓ(]X•[P• , (j
†
]X•[P•

Ω•
]X•[P•

→ j†]X•\Xs,•[P•
Ω•

]X•[P•
)s) (3)

where (−)s denotes the total complex of the morphism of complexes, interpreted as 
the rows of a double complex with j†]X•[P•

O]X•[P•
in degree (0, 0). Here, for U• = X•

or X• \ Xs,•, the symbol j†]U•[P•
denotes the functor of overconvergent sections along 

]X• \ U•[P•

6 In [9, §4] the authors also need a compactification X over a smooth compactification of C to apply 
a result of Crew on weight-monodromy in positive characteristic. In the present paper we do not use the 
result of Crew and hence we do not need such a compactification.
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Consider now the following admissible covering of ]X•[P•

{]X•[P•\]Xs,•[P• , ]X•[P• .}

Note that the two constituent complexes in (3) agree on the former admissible open sub-
set and also on the intersection (]X•[P•\]Xs,•[P•)∩]X•[P• . As such the total complex 
in (3) restricts, on these admissible opens, to the total complex of the identity map, 
which has trivial cohomology [21, Exercise 1.5.1]. It follows from Zariski descent that

RΓXs,rig(X) = RΓ(]X•[P• , (j
†
]X•[P•

Ω•
]X•[P•

→ j†]X•\Xs,•[P•
Ω•

]X•[P•
)s)

∼= RΓ(]X•[P• , Ra•,∗((j†]X•[P•
Ω•

]X•[P•
)|]X•[P•

→ (j†]X•\Xs,•[P•
Ω•

]X•[P•
)|]X•[P•

)s)

where a• :]X•[P• ↪→]X•[P• is the inclusion.
Furthermore, it was shown in [9, Proposition 4.1] that the direct image a•,∗ is exact 

on the sheaves Ω•
]X•[P•

and j†]X•\Xs,•[P•
Ω•

]X•[P•
, resulting from the fact that Xs is a 

divisor. Hence

RΓXs,rig(X) = RΓ(]X•[P• , (j
†
]X•[P•

Ω•
]X•[P•

→ j†]X•\Xs,•[P•
Ω•

]X•[P•
)s)

∼= RΓ(]X•[P• , Ra•,∗((j†]X•[P•
Ω•

]X•[P•
)|]X•[P•

→ (j†]X•\Xs,•[P•
Ω•

]X•[P•
)|]X•[P•

)s)

∼= RΓ(]X•[P• , a•,∗(Ω•
]X•[P•

→ j†]X•\Xs,•[P•
Ω•

]X•[P•
)s)

∼= RΓ(]X•[P• , (Ω•
]X•[P•

→ j†]X•\Xs,•[P•
Ω•

]X•[P•
)s)

= [RΓconv(X) → RΓrig((X \Xs, X))].

In the final line we’ve used the fact that the total complex of a morphism (A• → B•)s is 
a representative of its mapping fiber [A• → B•]. This is what we wanted to prove. �

Now that we’ve established that the cohomology RΓXs,rig(X) can be computed 
without a compactification of (a simplicial cover of) X, we are now able to compute 
RΓXs,rig(X) via an alternative covering which replaces the data of a good compactifica-
tion of X with a covering respecting the log structure on X.

Denote by M the log structure on X associated to the normal crossing divisor Xs. 
In the following, the scheme Xs will be considered as a log-scheme with log-structure 
induced by M .

Lemma 7. There is a canonical isomorphism

RΓXs,rig(X) ∼= [RΓconv(Xs) → RΓlog-rig(Xs/S
∅)].
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Proof. Denote by M the log structure on X associated to the normal crossing divisor 
Xs. We also attach to C the log structure N associated to the closed point s ∈ C, so 
that in particular the morphism (X, M) → (C, N) is log smooth.

Because C is a smooth curve over k, it admits a smooth lifting C̃ over OK [18, 
Corollaire III.7.4]. Let C be the completion of C̃ along its special fiber C, let ŝ be a lift 
of s to C and let t be a local coordinate of ŝ over OK . Then 1 �→ t defines a log structure 
on C , which we denote by N . Then the maps

s× → (C,N) → (C ,N )

are exact closed immersions and the latter two are log smooth over (Speck)∅ and S∅, 
respectively.

By [9, Proposition 4.3], we can construct a simplicial étale hypercovering

(X•,M•) (Q̃ex
• , M̃•)

(X,M)

(C,N) (C ,N )

iex•

where the log structure M• on X• is that induced by M and where iex• is an exact 
closed immersion into a simplicial log-formal scheme (Q̃ex

• , M̃•) which is log-smooth 
over (C , N ) and with Q̃ex

• separated, smooth, and of finite type over OK . Moreover 
(Q̃ex

• , M̃•) → (C , N ) is formally log-smooth and admits a lift of Frobenius.

Remark 8. The virtue of such a hypercovering is that, as we will see, it can be used both 
to compute rigid cohomology and logarithmic rigid cohomology.

If we let Xs,• denote the induced étale hypercovering of Xs, we can now apply a pair 
of results of Shiho [19, Corollary 2.3.9, Proposition 2.4.4] which in conjunction say that 
we have an identification

RΓrig((Xm \Xs,m, Xm)) ∼= RΓlog-conv((Xm,Mm)/S∅) ,

because every (Xm, Mm) is a smooth log scheme and its log-structure is trivial on Xm \
Xs,m.

It follows by étale descent on rigid cohomology [8] that

RΓrig((X \Xs, X)) ∼= RΓlog-conv((X,M)/S∅).

It is clear by looking at their representative de Rham complexes that this isomorphism 
fits into the commutative diagram
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RΓconv(X) RΓlog-conv((X,M)/S∅)

RΓconv(X) RΓrig((X \Xs, X))

= ∼=

so to prove the lemma it suffices to show, by Lemma 6, that

[RΓconv(X) → RΓlog-conv((X,M)/S∅)] ∼= [RΓconv(Xs) → RΓlog-conv((Xs,Ms)/S∅)].

The argument is similar to that of Lemma 6. The former mapping fiber can be written 
as

RΓ(]X•[Q̃ex
•
, (Ω•

]X•[Q̃ex•
→ Ω•

]X•[Q̃ex•
〈M̃•〉)s). (4)

To compute this, consider the admissible cover of Cη given by the tube of {s} in C and 
V a strict affinoid neighborhood of C \ {s} in C . Their inverse image in ]X•[Q̃ex

•
is an 

admissible covering as well; the inverse image of the tube of {s} is given by ]Xs,•[Q̃ex
•

and we denote by V• the inverse image of V . The restrictions to V• of the two complexes 
in (4) are the same, and the inclusion ι•,η :]Xs,•[Q̃ex

•
→]X•[Q̃ex

•
is quasi-Stein, again since 

Xs is a divisor. It thus follows by the same argument as in Lemma 6, using Kiehl’s result 
that Rι•,η∗ = ι•,η∗ on coherent sheaves [14, Satz 2.4], that (4) is isomorphic to

RΓ(]Xs,•[Q̃ex
•
, (Ω•

]Xs,•[Q̃ex•
→ Ω•

]Xs,•[Q̃ex•
〈M̃•〉)s)

But this in turn is isomorphic to

[RΓconv(Xs) → RΓlog-conv(Xs/S
∅)]

as desired. �
We are now in a position to prove the main claim:

Proof of Theorem 1. Due to Lemma 4 we prove the statement with “log-rig” in place of 
“log-crys” and RΓlog-rig(Xs/S

×) is the log-rigid cohomology complex of Ertl–Yamada 
(see Remark 5).

By [10, Proposition 3.33 (1)], the associated exact triangle is

RΓlog-rig(Xs/S
∅) → RΓlog-rig(Xs/S

×) N−→ RΓlog-rig(Xs/S
×)(−1) → .

(The twist RΓlog-rig(Xs/S
×)(−1) arises from the fact that, as expected, Nϕ = pϕN ; see 

[12, Proposition 5.5]). We thus obtain a quasi-isomorphism

RΓlog-rig(Xs/S
∅) ∼= [RΓlog-rig(Xs/S

×) N−→ RΓlog-rig(Xs/S
×)(−1)].
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Plugging this into the exact triangle corresponding to the mapping fiber in Lemma 7
we obtain an exact triangle

RΓXs,rig(X) → RΓconv(Xs) →

[RΓlog-rig(Xs/S
×) N−→ RΓlog-rig(Xs/S

×)(−1)] → .

Finally, Poincaré duality [2, Théorème 2.4] (see [6, §2.1] for details on the Frobenius 
action) provides a canonical isomorphism

RΓXs,rig(X) ∼= RΓrig(Xs)∗(−n− 1)[−2n− 2]

so after substitution and shifting the triangle we obtain an exact triangle

RΓrig(Xs)∗(−n− 1)[−2n− 1]

RΓrig(Xs)
[
RΓlog-rig(Xs/S

×) N−→ RΓlog-rig(Xs/S
×)(−1)

]
of ϕ-modules, as desired. �

Remark 9. Of course a scheme Y in characteristic p can be embedded as a closed sub-
scheme in other ways and these other embeddings suggest further directions for research. 
For example, Y may be the fiber of a 1-dimensional arithmetic family, such as a discrete 
valuation ring of mixed or equal characteristic.

It may be interesting to consider Y as the special fiber of a scheme X over a complete 
discrete valuation ring with residue field k and to give meaning to the cohomology

RΓY (X)

with support in the special fiber. It may be possible to extend the proof to this situation 
if such a cohomology is defined. One could also study a family over a discrete valuation 
ring of equicharacteristic p, for example when Y is the special fiber of a scheme X over 
k�t�. Rigid cohomology over such a Laurent series has a more analytic flavor. It is defined 
to be a functor

X �→ H∗
rig(X/EK)

taking values in graded vector spaces over the Amice ring

EK :=
{∑

ait
i ∈ K�t, t−1� : supi |ai| < ∞, lim

i→−∞
ai = 0

}
.

i∈Z
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To study these objects one can study instead rigid cohomology over the bounded Robba 
ring X �→ H∗

rig(X/E †
K), where

E †
K =

{∑
i∈Z

ait
i ∈ K�t, t−1� : supi |ai| < ∞,∃η < 1 s. t. lim

i→−∞
|ai|ηi = 0

}

The bounded Robba ring has the additional virtue that it is a Henselian discretely valued 
field with residue field k((t)). This cohomology theory is constructed so that when we 
base change to EK one recovers EK-valued rigid cohomology (see [16, §2.2] for details). 
This is a direction for further research.

Data availability

No data was used for the research described in the article.
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