A note on Grothendieck fundamental group

Nicola Mazzari

Abstract

We give a basic introduction to the Grothendieck fundamental
group. We consider only affine schemes and we don’t assume the reader
familiar with algebraic geometry.

Introduction

Very roughly speaking we can say that algebraic/arithmetic geometry is the
study of systems of polynomial equations. Let k£ be a commutative ring
with unit and fi, ..., f, € k[T4,...,T,] be polynomials of n unknowns with
coefficient in k. We are interested to study the “solutions” the system

fl(le--aTn) :O
M= : :

fou(T, ..., T,) =0

For any k-algebra R, ie. Zx(R) := {a = (a1,...,a,) € R" |fi(a1,...,a) =
0V ¢}. Two well known particular cases are:

1. if R =k is a field and n = m = 1 we are in the setting of Galois theory.
2. if R =k is a field and the f; are linear we are doing linear algebra.

Another important example is the case k = C, then the set Zx(C) can be
viewed as a closed sub-set of C™ with respect to the standard topology. Hence
in this case we can use topological methods in order to classify these zero-sets.

In topology there are (at least) two ways to define the fundamental group
(S, s) of a topological space S. Namely we can view it as the set of loops
based on a point s up to homotopy, or as the group of automorphism of
the universal cover. This second approach can be made algebraic (i.e. it
works for any ring k), as we are going to explain later, and allows to define

the Grothendieck (or étale) fundamental group 7§* of a system X (or more
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generally any noetherian connected scheme). This is a pro-finite group and
it is isomorphic to the pro-finite completion of 7 (Zx(C),s) when k = C.
This follows by some important differences between the topological and the
algebraic setting.

In fact in the algebraic setting one cannot use the topological definition of
a cover. This lead to the notion of étale morphism which is purely algebraic
and corresponds to local isomorphisms when we are dealing with complex
schemes.
There is also another problem to overcome. The universal étale cover rarely
exists. The solution is to consider finite approximations. It follows that the
étale fundamental group is a projective limit of finite groups.

1 Affine schemes

Let fi,..., fm € k[T}, ..., T,,] and consider the system of equations

fH(Ty, ..., T,) =0
DESEE :
fou(T1, ..., T,) =0

Let Zy(R) := {a = (a1,...,a,) € R" |fi(a1,....,a;m) = 0 V i} be the set of
solutions of the system with values in R.

In order to have a better understanding of Zx(R) for any R we will use
commutative algebra and study the A = k[T3,...,T,]/I associated to the
system 3, where [ = (f1, ..., fmm). This is justified by the following

HOIIlA|g,C (A, R) = HomA'gk‘ <%’ R>

={¢:k[T1,...T,] = R | ¢(fi) =0V i}
={(a1 = ¢(T1), ...,an, = ¢(T3))| filar,...,a,) =0V i}

Note that given a ring morphism f : A — B we have a natural transformation
[* : Homag, (B, —) — Homag, (A, —). Explicitly for any ring R we have
[k : Hompyg, (B, R) — Homapg, (A, R), fr(9) =go [.
Example 1.1. i) Let k be a field. Then for any k-algebra R, Homayg, (k, R) =
{pt}. In fact there is only one k-linear morphism sending 1 — 1.

ii) Let A = k[T, ..., T,,] and R be an k-algebra. Then Hom(k[T}, ..., T,], R) =
R™. Hence this ring corresponds to the n-dimensional affine space over k.



iii) Let A = k[T, T'] be the ring of Laurent polynomials. Then Homag, (A, R) =
R* is the set of invertible elements in R. This can be thought as the affine
line (over k) without the origin.

iv) Let A be a C-algebra of the following type C[11,...,T.]/(f1, s fim)
then the set of C-points (or solutions over C) Hompg, (A4, C) is naturally a
closed subset of C" w.r.t. the standard topology.

2 The topological fundamental group

Fix a (connected) topological space S. We assume that all the topological
spaces in this section are path-connected and locally simply connected. These
assumptions on S imply the existence of the universal cover.

Definition 2.1. We say that a continuos and surjective map ¢ : X — §
is a cover of S (or a covering space) if for any point s € S there exists U,
path-connected open neighborhood of s, such that the restriction

¢|V 'V —U
is an homeomorphism for any V' path-connected component of ¢~(U) C X.

Ezample 2.2. 1) Let S = C* = C\0. Then the exponential map exp : C — C*,
exp(z) :== > x"/nl, is a cover of C*. Note that #exp~'(s) = oo for any
s e C.

ii) Let S = C* and fix n € Z. Then we can define the following cover of S
fn : C* — C*, ¢(x) = 2™. This cover is finite of degree n: i.e. #u,'(s) =n
for any s € C*.

We define the category Covg of covers of S in the following way: an object
of Covg is a cover ¢ : X — S; a morphism f from ¢ : X — Stoy:Y — S
is a continuous map f : X — Y such that ¢ o f = ¢.

Remark 2.3. Fix a cover ¢ : X — S and a point s € S.

i) According to the previous definition the group Autcoy,(¢) is the set of
homeomorphisms f : X — X such that ¢ o f = ¢. This group acts on the
fiber ¢~1(s) by

Atcoys (9) X ¢~ 1s = ¢ (s)  (f,2) = flx)

ii) The previous action is transitive if and only if ¢.(m (X, z)) C 7 (S, )
is a normal sub-group. In this case ¢ is called a Galois cover.
iii) Also the fundamental group (S, s) acts on ¢~(s) by lifting paths

m(8,8) x ¢7's = o7 (s) (1], @) = ()
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where 7, is a lifting of v starting from .
The stabilizer of 2 € ¢~!(s) is isomorphic to ¢, (m (X, z)).

Theorem 2.4. The functor F : Covg — Set, F(X 2 S) = ¢71(s) is
representable: i.e. there exists a (universal) cover ¢* : X* — S such that

Homeoyy (6", =) = F(-)

Moreover F' induces an equivalence between the category Covg and the cate-
gory of w1 (S, s)-sets.

Remark 2.5. i) The universal cover can be characterized by the fact that X is
simply connected. The existence of such a cover depends on the topological
assumptions given at the beginning of the section.

ii) An immediate corollary of the theorem is the canonical isomorphism

7T1<S, S) = AUtCov(S) (¢u)

hence the topological fundamental group can be defined via covers.

Example 2.6. In the case S = C* the exponential map is the universal cover.
An automorphism of the cover exp : C — C* is of the form z — x + 27in for
some n € Z. Hence 7 (C*, s) = 2miZ.

3 Grothendieck fundamental group

3.1 étale covers

Definition 3.1. Let A be a ring (noetherian, commutative, with unit). A
ring morphism f : A — B is an étale if it is of finite type, flat and unramified.
If it also finite we call it an étale cover.

This means that an étale cover of A is an A-algebra B which is a finitely
generated A-module and for any m C A maximal ideal the fiber B ® A/m is
a separable algebra over the field A/m. Recall that a separable algebra over
a field £ is isomorphic to a direct sum of finite separable extensions of k.
On the geometric side we have a map of functors ¢ = f* : Homag(B, —) —
Homajg (A, —) such that for any element (or k-point) s € Homay (A, k) the
fiber ¢~1(s) C Homag(B, k) is a finite set of distinct point as in the topolog-
ical case.

The basic example of an étale cover is the following.



Ezample 3.2. Let A = k[T] where k is an algebraically closed field. Consider
B = k[T,S])/(f) and ¢ : A — B defined by ¢(T) = T mod (f). Then ¢
is an étale cover of A if and only if for any (a,b) € Homag(B, k) we have
(0f /0S)(a,b) # 0.

In particular it is easy to check that we have an étale cover for f = S —T77
(this is in fact an isomorphism), while for f = S? — T there is a pathological
point in (0,0).

A key point for the construction of the étale fundamental group is the
existence of Galois covers. Let A be a ring and f : A — B an étale cover, it
is a Galois cover there exists a finite group G acting (on the left) faithfully
on B such that

1. The rings of G-invarinats B¢ = {g € G|gb = b} is isomorphic to A.
2. f: A — B is the canonical inclusion B¢ — B.

In this case the group of automorphism of the cover is G. If we start with
G acting on B than the canonical map BY — B is an étale cover if the all
inertia groups of the action are trivial.
Ezample 3.3. Let G = Z/nZ and B = k[T, T~*,5]/(S™ — T). Consider the
following action: [m] -7 = T, [m]-S = S™, for m € Z. Then it easy
to check that BY = k[T, T~!] and that the canonical map ¢ : k[T, T71] —
k[T, T~ S]/(S™ —T) is étale. Moreover note that there is another way to
write the same cover, namely

o KT = MIT] ua(T) = T7

in fact it is easy to check that there is a ring ismorphism 6 : k[T, T, S]/(S"—
T) — k[T, T~ such that § o1 = pu,.

3.2 The main result

Let A be a ring (e.g. A = k[T},...,T,,]/1) and fix s € Homay(A, 2) where
(2 is an algebraically closed field. For any étale f : A — B cover we can
consider the set of points of Homp (B, 2) lying over s, i.e.

FB):={t:B—Q|to f=s}

This association induces a functor from the category of étale covers of A to
the category of sets. Now we are ready to state the main result of these
notes.



Theorem 3.4. There exists a projective limit of Galois cover (fo : A — Ba)
such that for any étale cover f: A — B

F(B) = colim Homag , (B, Ba)

(i.e. F is a pro-representable functor). Moreover we can define the pro-finite
group T$*(A, s) := lim, Aut(B,) = lim, F(B,) and F induces an equivalence
of categories

F : {étale covers of A} — {77"(A, s)-sets} .
Proof. See [sgaTl], Exp. V, §5 and 7. O

Ezample 3.5. We already know that the (topological) fundamental group of
C* is isomorphic to Z. In the algebraic setting C* correspondﬂ to the ring
A = Q|[T, T7']. The following morphism

(=)":Q[T, T = B, =Q[T,T7'] T+ T"

is an étale cover, moreover it is a Galois cover with group Z/nZ. Hence if
we take the projective limit lim, Aut(B,) = lim, Z/nZ = Z we obtain the
pro-finite completion of Z.

Example 3.6. Let A = R, then it is easy to check that R — C is an étale
cover with group Z/2Z (the action is the complex conjugation!). Moreover
this the universal étale cover of R and 7$*(R,C) = Aut(R — C) = Z/2Z.
We remark that this is a very special situation. In fact we can hope to find
the universal étale cover only in case 7¢* is a finite group.

All this theory can be generalized to the case of locally noetherian affine
schemes. Unfortunately we can compute the étale fundamental group only in
few cases, even for affine schemes. As final remarks we mention the following
important results

1. (Comparison with the topological fundamental group) Let A be a C-
algebra of finite type (i.e. A = C[T},...,T,,]/I) and let S be the set
of C-points Homaig(A, C) endowed with the standard topology. Then
there is a canonical isomorphism of pro-finite groups

%\1(57 S) = 7T‘13t(A7 5)

where 71 (S, s) is the completion of the (topological) fundamental group
m(S,s) w.r.t. the topology of finite index sub-groups. (See [sga71]
XIL5.2)).

'Indeed we could consider any other field in place of @, but the story changes a lot in
characteristic p.



2. (Galois theory) If k is a field and k is its algebraic closure, then 7§ (k, k) =
Gal(k/k) is the absolute Galois group of k.

3. If A is an algebra over a field k, then there is an exact sequence
1= 7A@k k) — 7(A k) — Gal(k/k) — 1

Thus in general the étale fundamental group carries both a geometric
and an arithmetic information.
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