
AN INTRODUCTION TO FORMAL GEOMETRY

NICOLA MAZZARI

Abstract. The first aim of this 5th talk (of about 1h20) is to give an account

on some basic results of formal geometry, including Grothendieck’s Comparison
and Existence Theorems.

We will consider only noetherian formal schemes, and cover the content

of Grothendieck’s Bourbaki seminar on the subject [3, Exp. 182, §§ 1-3]. We
recall the basic definitions following the notes of Illusie [5]. We also recall the

main results (without proof) about completions and Mittag-Leffler conditions.
Concerning Grothendieck’s Comparison and Existence Theorems, some

ideas of their proofs will be given, under some projectivity (instead of mere

properness) assumption. (The proof of the Existence Theorem is quite close
to the one of GAGA Existence Theorem.)

This talk will include a discussion of: (i) the formal completion of some

noetherian scheme along a closed subscheme; (ii) the notion of “algebraic for-
mal germ” as in [1, 4.2], and of its higher dimensional variant in [2, Proposition

A.1]; (iii) the “formal exponential map” associated to an algebraic group G

over a field k of characteristic zero [1, 2.1.2].
Grazie mille to the organizers of this workshop!

https://webusers.imj-prg.fr/~marco.maculan/java/

1. Basic definitions

1.1. The objects of algebraic geometry. Roughly speaking we can say that
the object of arithmetic algebraic geometry is the study of systems of plynomial
equations

X =


f1(x1, ..., xn) = 0
...

...

fm(x1, ..., xn) = 0

,

where fi ∈ k[x1, ..., xn] are plynomials with coefficients in a field (or a ring) k. For
instance one can take k = Q and ask for solutions in Q,R,C. In general we can
denote by X(R) the set of R-solutions of the system X and we can easily check
that

X(R) = HomAlgk
(
k[x1, ..., xn]

(f1, ..., fm)
, R) ⊂ Rn .

We can even consider system of homogeneus polynomials so that the set of solutions
is contained in some projective space. Anyhow, at least locally, we can always study
the functor

X(−) = HomAlgk
(
k[x1, ..., xn]

(f1, ..., fm)
,−)

which is completely determined by the ring k[x1,...,xn]
(f1,...,fm) . For instance

HomAlgk
(k[x1, ..., xn], k) = kn HomAlgk

(
k[x, y]

(xy − 1)
, k) = k∗ .

We could introduce C-anlytic spaces in a similar way by replacing k[x1, ..., xn] with
the set of holomorphic functions on a polydisk (or some open of Cn).
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1.2. Local. An adic noetherian ring is a noetherian topological ring A which is
separated and complete for the I-adic topology, where I is an ideal of A. In other
words

A = lim
n≥0

A/In+1 .

With such a ring is associated a topologically ringed space1

Spf(A) = colim
n≥0

Spec(A/In+1) (as top. ringed spaces)

called the formal spectrum of A. Note that the underling topological space is that
of Spec(A/I) and the structural sheaf is given by the following limit

OSpf(A) = lim
n≥0
OSpec(A/In+1) .

An affine noetherian formal scheme is a topologically ringed space isomorphic
to Spf(A) for some A as above.

Similarly to previous paragraph let fi ∈ k[[x1, ..., xn]] (this is the (x1, ..., xn)-adic
completion fo k[x1, ..., xn]) then A = k[[x1, ..., xn]]/(f1, ..., fm) is an adic ring and

Spf(A)(R) = Homc
Algk

(k[[x1, ..., xn]]/(f1, ..., fm), R) = colim
i

HomAlgk
(

k[x•]

(f•) + (x•)i+1
, R)

it is just the union of R-solution of a family of system of plolynomials. For instance
we have

Homc
AlgZ

(Z[[x1, ..., xn]], R) = Nil(R)n HomAlgZ(
Z[x, y]
(xy − 1)

, R) = 1 + Nil(R) .

1.2.1. Examples.

(1) A is any ring, I = (0), then Spf(A) = Spec(A) is just the affine scheme
corresponding to A.

(2) A = Zp et I = pZp. In this case |Spf(Zp)| = |Spec(Fp)| is the Fp-point
and the structural sheaf is Zp

(3) A = K[[t]], I = tK[[t]].

1.3. Global. A locally noetherian formal scheme is a topologically ringed space
locally isomorphic to an affine noetherian formal scheme. Locally noetherian formal
schemes form a category whose morphisms are those of locally topologically ringed
spaces (i.e. on the structural sheaves they are local and continuous).

As for schemes we have

Hom(X ,Spf(A)) = Homc(A,Γ(X ,OX ) .

1.4. The formal completion along a closed subscheme. Locally noetherian
schemes usually appears as colimits of increasing chains of nilpotent thickenings.
Let X be a locally noetherian scheme, I ⊂ OX a coherent ideal defining the
closed subscheme Z = V (I). Consider the inductive system of (locally noether-
ian) schemes Xn = Spec(OX/In+1). This system satisfies :

(1) X0 = Z is a locally noetherian scheme.
(2) the maps |Xn| → |Xn+1| are homeomorphisms and OXn+1 → OXn are

surjections.
(3) for m ≥ n, ker(OXn

→ OXm
) = (ker(OXn

→ OX0
))m+1.

(4) ker(OX1
→ OX0

) is a coherent OX0
-module.

The above conditions assure that X̂ = X/Z := (|X0|, limnOXn
) is a locally

noetherian formal scheme. In fact we have X̂ = colimn Xn where we do the colimit
in the category of formal schemes.

1Ringed spaces whose structural sheaf as values in topological rings.
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1.5. Formal germ. Let X̂ = X/Z the completion of a scheme X along a closed
subscheme as in the previous number. We assume all the objects are defined over a

field k. A smooth formal germ of X through Z is a closed formal subscheme V ⊂ X̂
such that

(1) V is formally smooth over k of pure dimension d;
(2) V contains Z and they have the same underlying topological spaces.

For instance one can take X = A2
k, Z = (0, 0), X̂ = Spf(k[[x, y]]), V = Spf(k[[x]])

which is algebrizable. If we take V = Spf(k[[x, y]]/(y − exp(x))) we get a non
algebrizable formal germ.

1.6. Group schemes. Let k be a field of characteristic zero and let G/k be a
smooth algebraic group scheme. We denote by g its Lie algebra, i.e. the vector
group whose functor of points is

A 7→ ker(G(A[ϵ])
ϵ7→0−−−→ G(A)) .

We denote by Ĝ (resp. ĝ) the formal completion of G (resp. g) along the unit
section. Then there exists a canonical isomorphism of formal schemes2 over k

êxpG : ĝ −→ Ĝ

such that

(1) the differential in 0 is the identity;

(2) for any homomorphism ι : Ĝa → ĝ the composition êxpG ◦ ι is a morphism
of formal group schemes.

This map is called the formal exponential map of G. This map is constructed
via the Campbell-Hausdorff formula.

1.6.1. The trivial case. For G = Ga the formal exponential êxpG is just the identity
on the formal additive group.

1.6.2. The multiplicative group. For G = Gm we can identify g = Ga so that for
any k-algebra

ĝ(A) = Nil(A) , Ĝ(A) = 1 + Nil(A) ,

where Nil(A) is the ideal formed by nilpotent elements in A. In this case the
exponential formal series makes sense and it is exactly what we need.

1.6.3. The general linear group. For G = GLn we can identify g = Mn and for any
k-algebra A we have (quite easily)

ĝ(A) ∼= Mn(Nil(A)) , Ĝ(A) = I +Mn(Nil(A))

so that the exponential of matrices gives the bijection, but this is not a group
homomorphism (unless n = 1).

2. The Grothendieck comparison theorem and its corollaries

2.1. Setting. Let f : X → Y be a morphism of locally noetherian schemes, let
Y ′ ⊂ Y be a closed subset and X ′ = f−1(Y ′) so that we can form a morphism fn,

and its limit f̂ , sitting in the following commutative squares of (formal) schemes

Xn

fn

��

in // X

f

��

X̂

f̂
��

i // X

f

��
Yn

jn // Y Ŷ
j // Y

2Not of formal group schemes!
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where X̂ = X/X′ , Ŷ = Y/Y ′ .
Let F be anOX -module, then the above diagram induces a canonical base change

map

γ : j∗Rqf∗F → Rq f̂∗(i
∗F)

which is OŶ -linear.

2.2. Mittag-Leffler. We say that an inverse system of abelian groups (An, ϕn′,n)
satisfies the ML condition if for each n there is an n0 ≥ n s.t. for all n′, n′′ ≥ n0

we have ϕn′,n(An′) = ϕn′′,n(An′′). This is a sufficient condition for the vanishing
Rq limn An = 0, for all q > 0.3

2.3. Artin-Rees Lemma. Let A be a noetherian ring, I ⊂ A an ideal and M a
finitely generated A-module. For all M ′ ⊂M A-submodule there exists n0 > 0 such
that

∀ n ≥ n0, M ′ ∩ InM = In−n0(M ′ ∩ In0 M) .

In particular we have

(1) The I-adic topology on M induces the I-adic topology on M ′.
(2) The I-adic completion is exact on the category of finitely generated A-

modules.
(3) There is a canonical isomorphism Â⊗A M ∼= M̂ .

2.4. The comparison Theorem. 4 Notation as in § 2.1. We assume further that

• F is coherent. This implies i∗F = limF ⊗OXn =: F̂ .
• f is of finite type and the support of F is proper over Y . This implies that

j∗Rqf∗F is coherent and we can write j∗Rqf∗F = R̂qf∗F .
Then the base change map can be written as follows

γ : R̂qf∗F −→ Rq f̂∗F̂
and it is a topological isomorphism of OŶ -modules (for all q).

Sketch of the proof. We can reduce to the case where f is proper by restriction to
the support of F . Moreover it is sufficient to prove the theorem for Y = Spec(A)
affine with A noetherian and Y ′ = Spec(A/I).

In this setting Ŷ = Spf(Â), with Â = limn A/In+1, and we can write5

R̂qf∗F = lim
n

Hq(X,F)/In+1 Rq f̂∗F̂ = Hq(X̂, F̂) ,

which are Â-modules.
Then we prove the following isomorphisms of Â-modules

Hq(X̂, F̂) a−→∼= lim
n

Hq(X,F/In+1)
b←−∼= lim

n
Hq(X,F)/In+1 ,

this is enough since γ = a−1 ◦ b.
For both isomorphisms we need to deal with the (inverse) limit functor.

3In particular given an exact sequence of inverse systems of abelian groups

0 → (An) → (Bn) → (Cn) → 0

we get a long exact sequence of inverse limits

0 → limAn → limBn → limCn → R1 limAn → ...

and the ML condition assures the vanishing of R1 limAn in order to have a short exact sequence.
4The original proof of Grothendieck is not published. It should be in the spirit of [4, Ch. III,

Theorem 11.1] where f is projective and Y a point. The general case, following an argument of
Serre, is proven in [?, 4.1.7-8].

5By standard computation of higher direct images with values in affine schemes.
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(a) Continuity. We start be recalling the following natural isomorphism of
(derived) functors

RΓ(X̂, R lim
n
Fn) = R lim

n
RΓ(X̂,Fn) .

We can easily prove that Γ(U,Fn) satisfies ML for any affine U6, so thatR limn Fn =
limn Fn. Then we can consider a spectral sequence

Rp lim
n

Hq(X̂,Fn) ⇒ Hp+q(X̂, F̂) .

To get the claim we show that the inverse system Hq(X̂,Fn) satisfies ML. This is
more difficult and involves the Artin-Rees lemma.

(b) Completion. For this part we follow Hartshorne and we restrict to the
case of f projective. Thus we can X = PN

A is a projective space. By an explicit
calculation7 we can show (b) when F is (a finite direct sum of sheaves of the form)
O(d). Next we prove the result for any coherent F by descending induction on
q. By standard vanishing we have Hq(PN

? , coh) = 0 if q > N . So we assume the
comparison true for any sheaf and in degree q + 1. Let us consider a devissage

0→ R→ E → F → 0 ,

where E is a finite direct sum of sheaves of the form O(d). Since tensoring with
A/In+1 is not left exact we get two short exact sequences

Tn ↪→ En ↠ Fn Sn ↪→ Rn ↠ Tn .

Here again we need ML and the 5 lemma to reduce the statement to the following
claim

∀q ≥ 0, lim
n

Hq(X̂,Sn) = 0 .

The above vanishing follows from the Artin-Rees Lemma. □

3. Corollaries of the comparison Theorem

We keep the notation of §2.1.

3.1. Ext and completion. Assume Y = Spec(A), A noetherian, Y ′ = Spec(A/I),
f morphism of finite type. Let F,G be coherent sheaves on X whose supports have
an intersection which is proper over Y . Then Extr(F,G) is an A-module of finite
type and there is an isomorphism

̂Extr(F,G)
∼=−→ Extr(F̂ , Ĝ) .

3.2. Theorem on formal functions. f is proper, Y ′ = y is a closed point. Then
for all q ∈ Z, the stalk (Rqf∗F )y is an OY,y-module of finite type and the following
map is an isomorphism

̂(Rqf∗F )y
∼=−→ lim

n
Hq(Xy, Fn) .

3.3. Zariski’s connectedness theorem. Let f be proper and Y ′ = Spec(f∗OX)
which is a finite scheme over Y sitting in the following factorisation

X
p−→ Y ′ g−→ Y (Stein factorisation)

with p proper and g finite. Then p∗OX = OY ′ and the fibres of p are connected and
nonempty.

6By usual coherent cohomology vanishing.
7The invertible sheaf cohomology of a projective space.
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3.4. Zariski’s Main Theorem. Let f be compactifiable. If f is quasi-finite8, then
f can be factored as

X
j−→ Z

g−→ Y

where j is an open immersion and g is a finite morphism.

4. Algebraization problem

4.1. The problem. In this section A is an adic noetherian ring and I is an ideal

of definition. Let Y = Spec(A), Yn = Spec(A/In+1) and Ŷ = Spf(A) = colimn Yn.

Let X be an adic noetherian formal scheme over Ŷ , i.e.

X = colim
n

Xn , Xn := X ×Ŷ Yn .

Then we say that X is algebraizable if it is the I-adic completion of a locally
noetherian scheme over Y . If such a scheme exists we may ask about conditions for
its uniqueness.

4.2. Existence Theorem. Notation as in § 2.1. Assume that X is noetherian,
f of finite type and Y = Spec(A) affine with. We also assume that A is an adic

ring for the ideal I and Y ′ = Spec(A/I), so that Ŷ = Spf(A). Then the I-adic
completion induces an equivalence between the following categories :

(1) coherent sheaves on X whose support is proper over Y .

(2) coherent sheaves on X̂ whose support is proper over Ŷ .

Sketch of the proof. We get fully faithfulness by § 3.1. We will outline the strategy
to prove it is essentially surjective.

a) The projective case. If f is projective and E a coherent sheaf on X̂ we can
find (with some work) a presentation

OX̂(−m1)
r1 u−→ OX̂(−m0)

r0 → E → 0

where mi, ri ≥ 0 and OX̂(n) = OX̂ ⊗ L̂⊗n, for an ample line bundle L on X. By
fully faithfulness u = v̂ for a unique morphism v : OX(−m1)

r1 → OX(−m0)
r0 .

Then we get E =the completion of the cokernel of v.
b) f quasi projective. We use the extension by zero to reduce to the previous

case.
c) General case. Use Chow’s lemma and noetherian induction on X □

4.3. Corollaries. With the same assumptions of the Existence Theorem we have

(1) Z → Ẑ gives a bijection between the set of closed subschemes of X which

are proper over Y and the set of closed formal subschemes of X̂ which are

proper over Ŷ .

(2) Z → Ẑ gives an equivalence between the category of finite schemes over

X which are proper over Y and the category formal schemes finite over X̂

which are proper over Ŷ .
(3) Assume further that X is proper over Y and Z is noetherian scheme alge-

braic over Y . Then the application

HomY (Z,Z)→ HomŶ (X̂, Ẑ) , f 7→ f̂

is bijective.

(4) If X is a proper, adic Ŷ formal scheme9. If there exists an invertible OX -
module L such that L/IL is ample on X0, then X is algebrizable.

8...
9i.e. X = colimX ×

Ŷ
Yn.
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