
ON p-ADIC PERIODS

NICOLA MAZZARI

Abstract. Informal notes for a seminar on p-adic period rings. Better refer-

ences are the article by Fontaine on Asterisque 223 (In fact one should read the
whole book at some point!) and the survey by Berger or the (unpublished!)

book by Brinon and Conrad.

A poem

Ich lebe mein Leben in wachsenden Ringen,
die sich über die Dinge ziehn.
Ich werde den letzten vielleicht nicht vollbringen,
aber versuchen will ich ihn.

Ich kreise um Gott, um den uralten Turm,
und ich kreise jahrtausendelang;
und ich weiß noch nicht: bin ich ein Falke, ein Sturm
oder ein großer Gesang.

(Rainer Maria Rilke 1899)1

Timeline

• 1967 Tate work on p-divisible groups
• 1967 Serre question on periods of p-divisible groups
• 1972 Illusie Complexe Cotangent et Deformations II
• 1979 Fontaine introduces the formalism of Barsotti-Tate rings
• 1982 Fontaine construct the period rings (Annals paper)
• 2011 Beilinson proof of CdR

• 2011 Scholze Perfectoid Spaces

1. Motivation

1.1. Complex picture. Let K ⊂ C be a subfield. Gm = Spec(K[T±]) be the
affine line minus two points over K. Then Gm(C) = C× is homotopy equivalent to
the unit circle and the first homology group is H1(Gm(C),Z) ∼= π(Gm(C), 1) = Zϵ
where ϵ is the loop {eiθ : θ ∈ [0, 2π]}. Also we can easily compute the first algebraic
cohomology group

H1
dR(Gm/K) =

Ω1
K[T±]/K

d(K[T±])
= K

dT

T
.

Date: August 1, 2025.
1I live my life in ever-widening rings

that stretch themselves out over all the things.

I won’t, perhaps, complete the last one,
but I intend on trying.

I circle around God, around the ancient tower,
and I circle for thousands of years;
and I don’t know, yet: am I a falcon, a storm,
or a mighty song.
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1.1.1. The periods’ pairing. The integration along a path gives a natural (bi-linear)
pairing

H1(Gm(C),Z)×H1
dR(Gm/K) → K(2πi) (γ, ω) 7→

∫
γ

ω

and is completely determined by the value on the generators∫
ϵ

dT

T
=

∫ 2π

0

deiθ

eiθ
= 2πi .

1.1.2. The periods’ isomorphism. This can be generalised to a (projective) smooth
variety X/K. Moreover by Poincaré duality2 the above paring induces an isomor-
phism

ρdR : Hn(X(C),Q)⊗Q P → Hn(X/K)⊗K P

where P is a sufficiently large ring: in the case of Gm, ρdR is the multiplication by
1/2πi so it is enough to take P = K(2πi); in general we could simply take P = C
but it would be enough to take the extension of K formed by all possible periods
of algebraic varieties3.

1.1.3. Everything is algebraic. The de Rham cohomology is an algebraic invariant
and we have H1(Gm(C),Z) ⊗ Zp

∼= TpGm = Zp(1) = {(un)n ∈ CN : up
n+1 =

un, u0 = 1} which is again of algebraic nature. We may note that

2πi =

∫
ϵ

dT

T
= pn

∫ ϵn

1

dT

T
,

where ϵn = e(2πi)/p
n

is a primitive pn-root of 1.

1.2. A p-adic example. Now let [K : Qp] < +∞. We can still compute TpGm =

Zp(1) = {(u(n))n ∈ K̄N : u(n+1)p = u(n), u(0) = 1} whose generator is given by a

system ϵ = (ϵ(n))n of primitive pn-roots of 1. We can compute∫
ϵ

dT

T
:= pn

∫
ϵ(n)

dT

T
= pn logp(ϵ

(n)) = logp(1) = 0

but this does not give any good pairing TpGm ×H1
dR(Gm/K) → B. One can look

for a ring where t := “ log(ϵ)′′ makes sense and it is not 0. Moreover one should
expect some compatibility with respect to the Galois action TpGm:

g ·
∫
ϵ

dT

T
=

∫
g·ϵ

dT

T
, or gt = g log(ϵ) = log(ϵχ(g)) = χ(g)t ,

where g ∈ GK = Gal(K̄/K) and B is assumed to be a GK-module.

Theorem (Tate [5]). We have

H0(GK ,Cp(k)) = {c ∈ Cp : ∀g ∈ GK , gc = χ(g)k} =

{
K k = 0

0 otherwise
.

In particular there cannot be such a t in Cp.

2Let d = dimX, the there is a canonical isomorphism HomQ(H2d−n(X(C),Q),Q) ∼=
Hn(X(C),Q)

3There is a nice book on “Periods and Nori motives” by Huber and Müller-Stach. Also it is
worthwhile to have a look at [4]
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2. Barsotti-Tate period rings

4 Notation: K/Qp finite extension, G = GK = Gal(K̄/K). A p-adic represen-
tation is a finite dimensional Qp-vector space with a continuous linear action of
GK .

2.1. Admissible representations. Fontaine [1] constructs several rings of p-adic
periods B : they are topological Qp-algebras with a continuous linear action of GK

(and possibly other structures5) such that

(1) B is a domain and BG = Frac(B)G is a field.
(2) if bQp ⊂ B is GK-stable, then b ∈ B×.

For instance one can take B = K̄ or Cp, but we already know we need much
bigger ring to get periods of a general geometric representation.

Let F = BGK . We can define, for any p-adic representation6 V , the F -vector
space

DB(V ) := (B⊗Qp V )GK

and we say that V is B-admissible if the canonical map

αV : B⊗F DB(V ) → B⊗Qp V

is an isomorphism of B[GK ]-modules. The coefficients of a matrix of this isomor-
phism are called B-periods of V . In other words V is B-admissible iff B⊗Qp

V ∼= Bn

as G-representation.
Alternatively one con work with the contravariant functor

D∗
B(V ) = DB(V

∗) := (B⊗Qp
V ∗)GK = HomQp[GK ](V,B)

and the B-periods of V are images of the maps f ∈ HomQp[GK ](V,B).

2.2. Classification of p-adic representations. For any ring of periods B we can
define RepBQp

G to be the full subcategory of RepQp
G consisting of the B-admissible

representations.
For instance when B = K̄ (resp. Cp) one simply get the category of discrete

representations (resp. the action of the inertia is discrete).
We are going to define (following Fontaine) three important rings of periods

Bcrys ⊂ Bst ⊂ BdR (called crystalline, semi-stable and de Rham, respectively)
giving a sequence of full embeddings

RepcrysQp
G ⊂ RepstQp

G ⊂ RepdRQp
G ⊂ RepQp

G

and the representations arising from algebraic varieties fall in one or the other
category according the geometry of the object.

2.3. Conjectures. LetX/K be a proper and smooth scheme. Let V := Hn
ét(XK̄ ,Qp)

which is a p-adic representation of GK in natural way. Let M = Hn
dR(X/K) which

is a (filtered) finite dimensional K-vector space. We have the following conjectures7

4This notion is introduced first by Fontaine [1]. He explain that the name is due to several
reasons: these theory is developed in the contest of Barsotti-Tate groups in order to answer a

question by Serre; the only example of such rings was provided by Witt bi-vectors introduced by
Barsotti. In fact Fontaine introduced this notion by giving the formal properties: the concrete
construction of the rings BdR,Bcrys, ... was discovered later. Now it is customary to call these

rings Fontaine rings.
5In fact these rings are always filtered!
6A finite dimensional vector space V endowed with a continuous Galois action
7In the complex case the comparison theorem can be deduced from the periods pairing via

Poincaré duality. In p-adic setting one cannot define such a pairing in general, only for represen-
tations associated to Barsotti-Tate groups.
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CdR There is a GK-equivariant isomorphism

ρdR : V ⊗Qp BdR → M ⊗K BdR

compatible with the filtrations and the Galois action.
In particular DdR(V ) := (BdR ⊗Qp

V )GK ∼= M .

Cst If X has semi-stable reduction then the previous isomorphism holds true if
we replace BdR with the smaller ring Bst. Also Bst and M are endowed
with a monodromy N and a Frobenius ϕ such that Nϕ = pϕN and the
isomorphism is compatible with all the extra structures.
In particular DBst(V ) = M . Mind that the construction of N,ϕ both on M
and Bst depend on the choice of a uniformiser π of OK .

Ccrys If X/OK is proper and smooth, then we can replace Bst by Bcrys = BN=0
st .

All conjectures have been proved (and generalised) by the work of several authors
such as (in order of appearance): Fontaine, Messing, Kato, Faltings, Niziol, Tsuji,
Beilinson.

The basic example is that of Gm/K (which is not proper to be honest, but who
cares!) and n = 1: V = Qp(−1), M = KdT/T and ρdR is the multiplication by
1/t, where t ∈ Bcrys.

3. Constructions

Let A be an OK-algebra such that F : R/p → R/p, x 7→ xp is surjective. In

fact we can just take A = OK̄ or its p-adic completion Â = OCp , but in order to
prove the comparison theorems it is necessary to consider much bigger rings such
as OCp

[T 1/p∞
].

3.1. The first step (Tilting). We define the tilting8 A♭ := {(x̄n)n ⊂ A/p :
x̄p
n+1 = x̄n}. This is a perfect ring of characteristic p and there is an important

identification

A♭ = lim
F

A/p −→ lim
x→xp

Â := {(x(n))n ⊂ Â : x(n+1)p = x(n)}

associating to x = (x̄n)n the sequence (x(n))n given by

x(m) := lim
n→∞

xpn

n+m , for xn+m a lift of x̄n+m .

For instance if ϵ = (ϵ(n))n is a system of primitive pn-roots of 1 in K̄ then we can
define an element 1♭ ∈ O♭

K̄
such that 1♭,(n) = ϵ(n). Also if π ∈ OK is a uniformiser

we can define π♭ ∈ O♭
K̄

by choosing a system π♭,(n) = π1/pn

of roots of π.

Lemma. Let W (A♭) be the ring of Witt vectors of A♭. There is a surjective ring
homomorphism

θ : W (A♭) → Â , (x0, x1, ...) 7→
∑
n≥0

pnx(n)
n

9

In particular θ([x]) = x
(0)
0 where [·] : A♭ → W (A♭) is the Teichmüller lift.

8This is the name chosen by P. Scholze in 2011 even though the object already appears in
construction of Fontaine 30 years earlier. Nevertheless it is thaks to the work of Scholze that this
step is the building block of a general theory, that of perfectoid spaces, that clarifies many aspects

of p-adic Hodge theory. A nice lecture on this point is The Perfectoid Concept: Test Case for an
Absent Theory by Michael Harris

9Note that we have xk = (x̄k,n)n = (x
(n)
k )n according to the previous identification.
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According to the previous notation we can compute

θ([1♭]) = 1♭,(0) = ϵ0 = 1 θ([π♭]) = π♭,(0) = π .

3.2. The general case. Let W̃ (A♭) := OK ⊗W W (A♭) and θ̃ the base change of
θ. Consider the exact sequence

0 → ker(θ̃) → W̃ (A♭)
θ̃−→ Â → 0

and define Ainf(A/OK) to be the (p, ker(θ̃))-adic completion of OK ⊗W W (A♭).
This is the universal pro-infinitesimal formal p-adic thickening of A/p, so that

H0
inf(Spec(A/p)/ Spec(OK)) = Ainf(A/OK) = lim

n

W̃ (A♭)

(p, ker(θ̃))n+1
.

By replacing the infinitesimal cohomology by the crystalline (and assuming that
OK has divided powers) one we get the ring Acrys(A/OK) which the p-adic com-

pletion of the PD-envelope of W̃ (A♭) with respect to the ideal ker(θ̃). We have the
cohomological interpretation

H0
crys(Spec(A/p)/ Spec(OK)) = Acrys(A/OK)10 .

Note that A?(A/OK) = A?(Â/OK) for both constructions.

3.3. Classical Fontaine rings. From now on A = OK̄ . Let

ξ = π + [(−π)♭] = 1⊗ [(−π)♭] + π ⊗ 1 ∈ W̃ (O♭
K̄) ,

then ker θ̃ = ξW̃ (O♭
K̄
) is principal and Ainf := Ainf(OK̄/OK) = Ainf(OCp/OK) is

the ξ-adic completion of W̃ (O♭
K̄
).

Note that the valuation of OCp
induces a valuation on W (O♭

Cp
) by setting

v(x0, x1, ...) = ...
The map θ induces a surjective morphism θK : Ainf [1/p] → Cp and we define11

B+
dR := lim

n
Ainf [1/p]/(ker(θK)n)

We can now define the element

t := log([1♭]) =
∑
n>0

(−1)n−1 ([1
♭]− 1)n

n

which converges in B+
dR since ([1♭]− 1)n ∈ ker(θK)n. Note that we have to consider

Ainf [1/p] = Ainf ⊗K in order to have the denominators n of the series and we have
to complete to make it convergent.

Also we define12

Acrys := Acrys(OCp/W ) = p-adic completion of W (O♭
K̄)[ξn/n! : n > 0] ,

where ξ = p+ [(−p)♭]. More concretely we can show that

Acrys = {b ∈ B+
dR : b =

∑
n≥0

anξ
[n], an → 0 p-adically in W (OC♭

p
)}13

10to check Olivier notes!
11The first definition of BdR appear in [2]. In 2011 Beilinson shows that B+

dR = ̂LΩ•
OK̄/OK

⊗̂Qp,

which means that can be defined directly via the derived de Rham complex (Hodge completed

and p-adically completed) of Illusie, already available in 1972.
12Note that in the definition of Acrys the base is W not OK is order to be sure to have divided

powers
13Mind that the developpement b =

∑
n≥0 anξ

[n] is not unique. Also note that there elements,

such as
∑

p−n2
tn which are in B+

dR but not in B+
crys.
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The crystalline periods rings are B+
crys = Acrys[1/p] and Bcrys = B+

crys[1/t]. Now
let

u = uπ = log

(
1⊗ [π♭]

π ⊗ 1

)
∈ BdR, since θ

(
1⊗ [π♭]

π ⊗ 1

)
= 1

and define the semi-stable period rings B+
st = B+

crys[u], Bst = B+
st[u]. This makes

sense since u is transcendental over Bcrys. Note that t ∈ B+
crys

14.

3.4. Properties of period rings.

(1) the rings Bcrys ⊂ Bst ⊂ BdR are Barsotti-Tate rings such that BGK

dR =

K̄GK = K and BGK
crys = BGK

st = K0.

(2) B+
dR is a discrete valuation ring15 with residue field Cp. Its fraction field

BdR is filtered by the valuation by Fili BdR = {b : v(b) ≥ i}.
(3) the canonical embedding K̄ ⊂ Cp factors trough K̄ → B+

dR → B+
dR/Fil

1 =
Cp and all maps are GK-equivariant.16

(4) If ξ = p+ [−p♭] we have17

ϕ(ξ) = ξp + pη = p((p− 1)!ξ[p] + η) ∈ pW (O♭
Cp
)[ξ[p]]

therefore ϕ(ξ[m]) ∈ W (O♭
Cp
)[ξ[p]] and the Frobenius extends to Acrys and

Bcrys. We can also compute ϕ(u) = p · u so the Frobenius extends to Bst.
(5) We have guπ = ugπ. We can set Nu = −1 and we have Nϕ = pϕN .
(6) We have the fundamental sequence

0 → Qp(r) → FilrBcrys
ϕ/pr−1−−−−−→ Bcrys → 0

(which holds with B+
crys if r ≥ 0).
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14since [1♭]− 1 ∈ ker(θ) thus [1♭]− 1 = aξ and

([1♭]− 1)n

n
= (n− 1)!anξ[n]....

15details
16details
17The Frobenius in characteristic p induces a Frobenius on O♭

K̄
, so on W (O♭

K̄
).
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